
Universidad de Córdoba
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Resumen en castellano:

Esta tesis se centra en la identificación de personas a través de la
forma de caminar. El problema del reconocimiento del paso ha sido tratado
mediante diferentes enfoques, en los dominios 2D y 3D, y usando una o varias
vistas. Sin embargo, la dependencia con respecto al punto de vista, y por
tanto de la trayectoria del sujeto al caminar sigue siendo aún un problema
abierto.

Se propone hacer frente al problema de la dependencia con respecto
a la trayectoria por medio de reconstrucciones 3D de sujetos caminando. El
uso de reconstrucciones varias ventajas que cabe destacar. En primer lugar,
permite explotar una mayor cantidad de información en contraste con los
métodos que extraen los descriptores de la marcha a partir de imágenes, en
el dominio 2D. En segundo lugar, las reconstrucciones 3D pueden ser alin-
eadas a lo largo de la marcha como si el sujeto hubiera caminado en una
cinta andadora, proporcionando aśı una forma de analizar el paso indepen-
dientemente de la trayectoria seguida.

Este trabajo propone tres enfoques para resolver el problema de la
dependencia a la vista:

1. Mediante la utilización de reconstrucciones volumétricas alineadas.

2. Mediante el uso de reconstrucciones volumétricas no alineadas.

3. Sin usar reconstrucciones.

Se proponen además tres tipos de descriptores. El primero se centra en
describir el paso mediante análisis morfológico de los volúmenes 3D alineados.
El segundo hace uso del concepto de entroṕıa de la información para describir
la dinámica del paso humano. El tercero persigue capturar la dinámica de una
forma invariante a rotación, lo cual lo hace especialmente interesante para



ser aplicado tanto en trayectorias curvas como rectas, incluyendo cambios de
dirección.

Estos enfoques han sido probados sobre dos bases de datos públicas.
Ambas están espećıficamente diseñadas para tratar el problema de la de-
pendencia con respecto al punto de vista, y por tanto de la dependencia con
respecto a la trayectoria. Los resultados experimentales muestran que para el
enfoque basado en reconstrucciones volumétricas alineadas, el descriptor del
paso basado en entroṕıa consigue los mejores resultados, en comparación con
métodos estrechamente relacionados del Estado del Arte actual. No obstante,
el descriptor invariante a rotación consigue una tasa de reconocimiento que
supera a los métodos actuales sin requerir la etapa previa de alineamiento de
las reconstrucciones 3D.
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Abstract:

This thesis focuses on identifying people by the way they walk. The
problem of gait recognition has been addressed using different approaches,
both in the 2D and 3D domains, and using one or multiple views. However,
the dependence on camera viewpoint, and therefore the dependence on the
trajectory of motion still remains an open problem.

This work proposes to address the problem of dependence on the tra-
jectory through the use of 3D reconstructions of walking subjects. The use
of 3D models have several advantages that are worth mentioning. First, by
the use of 3D reconstructions it is possible to exploit a greater amount of
information in contrast to methods that extract descriptors from 2D images.
Second, the 3D reconstructions can be aligned along the way as if the sub-
ject had walked on a treadmill, thus providing a way to recognize people
regardless the path.

Three approaches are proposed in order to address the problem of the
dependence with respect the trajectory:

1. Using aligned 3D reconstructions of walking humans.

2. By using volumetric unaligned volumetric reconstructions of walking
humans.

3. Without using 3D reconstructions.

Three gait descriptors are also proposed. The first focuses on describ-
ing gait by means of morphological analysis of 3D aligned volumes. The
second makes use of the concept of information entropy to describe the dy-
namics of human gait. The third aims to capture the dynamics of gait in a
rotation invariant way, which makes it interesting for recognize people walk-
ing on both straight and curves path, and regardless direction changes.



These approaches have been tested on two public databases. Both
databases are specifically designed to address the problem of dependence on
the viewpoint, and therefore the dependence on the trajectory. Experimental
results show that for the approach based on aligned volumetric reconstruc-
tions, the entropy-based gait descriptor achieved the best results compared
to other closely related methods of the state-of-art. However, the rotation
invariant gait descriptor achieves a recognition rate that overcomes the com-
pared state-of-art methods, without requiring the prior step of alignment of
the 3D gait reconstructions.
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debidamente ponderadas en estas ĺıneas, y su amistad sincera. También al
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y Nicolás Luis Fernández, por todo lo aprendido de ellos, que no ha sido
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y mamá, esta tesis es más vuestra que mı́a, y no puedo más que daros las
gracias, una y otra vez. Gracias. También a mis hermanos, Antonio José y
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Chapter 1

Introduction

Generally, biometric is a field of technology that uses automated methods for
identifying or verifying a person based on anatomical or behavioural traits.
The term biometrics is derived from a Greek word “Bio” means life and
“metrics” means measure [1]. Thus, biometrics is the science and technology
of measuring and analysing biological data. Biometrics is classified into two
categories, anatomical and behavioural characteristics. Anatomical charac-
teristics are related to the shape of the body. Examples include, but are not
limited to fingerprints [2], iris [3], hand geometry [4], vein [5], DNA [6], Face
[7] and Ear Recognition [8]. Behavioural characteristics are related to the
pattern of behaviour of an individual and pay attention to the actions of a
person. Examples include, but are not limited to voice [9], typing rhythm
[10] and gait [11].

1.1 Gait recognition

The term “gait” refers to the walking pattern of a person. The walking
pattern is cyclic in nature and may be composed of many gait cycles, where
each gait cycle consists of at least two steps. What is especially interesting
of gait is that each individual describes an unique gait pattern, which means
it can be used as a biometric indicator [12]. Thus, gait as a biometric feature
for identification has received in recent years, a lot of attention due to the
apparent advantage that it can operate at a distance and can be applied
discreetly without needing the active participation of the subject [13].
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The first gait recognition approach was developed by Niyogi and Adel-
son on a small gait database in 1994 [14]. Subsequently, the HumanID pro-
gram, sponsored by Defense Advanced Research Projects Agency (DARPA)
[15], assists greatly in advancing automatic gait recognition. Spurred by the
HumanID program, many international famous universities and research in-
stitutes, such as the University of Southampton, the Massachusetts Institute
of Technology (MIT), Carnegie Mellon University (CMU) and the Institute
of Automation Chinese Academy of Sciences (CASIA), have made a lot of
researches on gait recognition.

Consequently, many research papers have been published in recent
years tackling the problem of human gait recognition using different sources
of data like inertial sensors [16, 17], foot pressure [18], infrared images [19],
depth images [20] or the traditional images [21, 22, 23]. For example, in
[13, 11] we can find two surveys on this problem summarizing some of the
most popular approaches. Some of them use explicit geometrical models of
human bodies, whereas others use only image features.

However, the gait recognition performance of most methods is signif-
icantly affected by changes in various covariate conditions such as clothing
[24], camera viewpoint [25, 26], load carrying [27], and walking speed [28].
According to camera viewpoint, the previous work can be categorized into
two approaches: view-dependent and view-independent approaches. The
view-dependent approaches assume that the viewpoint does not change while
walking. In such methods, a change in the appearance, caused by a view-
point change, will adversely affect to the recognition [29]. For example, when
a subject walks along a curved trajectory, the observation angle between the
walking direction of the subject and the camera optical axis is gradually
changed during the gait cycle. Fig. 1.1 shows the influence of a curved path
on the silhouette appearance. On the contrary, the view-independent ap-
proaches aim to recognize people under different viewing angles. However,
some of them do not allow curved trajectories or direction changes during
walking.

Previous studies on gait recognition have been also classified into two
categories: model-based approaches and model-free approaches [30]. The
model-based methods represent gait using the parameters of a body config-
uration model which is estimated over time, whereas model-free approaches
characterize the human gait pattern by a compact representation, without
having to develop any model for feature extraction and having practical appli-
cation even with low quality images where the color and texture information

2



Chapter 1. Introduction

camera

S
1

S
2S

3

S
4

S
5

3

5
1

Figure 1.1: In a curved path, the observation angle between the walking
direction of the subject and optical axis of the camera is gradually changed,
which affects the silhouette appearance.

is lost. While most of model-free approaches are view-dependent, the model-
based approaches are generally invariant to rotational effects and slight varia-
tions in the viewpoint. However, they are characterised by complex searching
and mapping processes, which increase the computational cost.

1.2 Applications

Some potential applications of gait recognition are access control [31, 13] in
special or restricted areas (e.g. military bases and governmental facilities)
and smart video surveillance where subjects do not know they are being mon-
itored (e.g. bank offices) [32, 33]. It also could be used for staff identification
on laboratories or medical isolation zones where subjects wear special clothes
that do not allow them to show the face or use the fingerprint (e.g. protective
clothing for viral diseases).

3
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(a) Gatwick auto-boarding biometric gate. (b) Medical isolation zone.

(c) Vault door at the Winona National
Bank.

(d) Military facilities.

Figure 1.2: Example of situations where gait recognition can be applied.

1.3 Aims of this work

The main goal of this dissertation is obtaining view-independent gait recog-
nition algorithms which can recognize people independently of the trajectory
of motion. In this way, we tackle such a challenge from the standpoint of 3D
reconstructions.

The main hypothesis is that the use of 3D reconstructions can be a
valid approach to address the challenge of gait recognition on unconstrained
paths. The use of 3D reconstructions has several advantages that are worth
mentioning. On the one side, 3D volumes of walking people can be aligned
along their way, and therefore well-known 2D gait descriptors can be ap-
plied, independently of the trajectory of motion, to extract gait features
from rendered projections of the aligned 3D-reconstructed volumes. On the
other side, the use of volumetric information allows more information to be
analysed in contrast to other methods of the literature which only compute

4



Chapter 1. Introduction

gait descriptors from silhouettes or 2D images, and therefore new 3D gait
descriptors can be proposed.

1.4 Contributions

The research work carried out during the development of this dissertation
has produced several articles that have been published in well-respected peer-
reviewed journals and conferences.

• D. López-Fernández, F.J Madrid-Cuevas, A. Carmona-Poyato,
M.J. Maŕın-Jiménez, R. Muñoz-Salinas, and R. Medina-Carnicer.
Viewpoint-independent gait recognition through morphological de-
scriptions of 3d human reconstructions. Image and Vision Computing,
48-49:1-13, 2016. ISSN 0262-8856. doi: 10.1016/j.imavis.2016.01.003.
url: http://www.sciencedirect.com/science/article/pii/

S0262885616300014

This study presents a multi-view gait recognition method that allows
curved trajectories on unconstrained paths in indoor environments.
The recognition is based on volumetric analysis of the human gait, to
exploit most of the 3D information enclosed in it. Two new morpho-
logical gait descriptors are presented. The first consists in computing
three Cover by Rectangles (CR) descriptors [34] on the front, side, and
top projections of the aligned 3D gait volumes. The second is the Cover
by Cubes, which is defined as the union of all the cubes with the largest
size that can fit into a volume belonging to the person. The proposed
approach is experimentally validated on two gait databases. The re-
sults show that this new approach is able to identify people walking on
curved paths.

• D. López-Fernández, F.J. Madrid-Cuevas, A. Carmona-Poyato, R.
Muñoz-Salinas, and R. Medina-Carnicer. Entropy volumes for
viewpoint-independent gait recognition. Machine Vision and Applica-
tions, 26(7):1079-1094, 2015. ISSN 1432-1769. doi: 10.1007/s00138-
015-0707-9. url: http://link.springer.com/article/10.1007%

2Fs00138-015-0707-9

This work presents an efficient multi-view gait-recognition method that
allows curved trajectories on completely unconstrained paths for indoor
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environments. The method is based on volumetric reconstructions of
humans, aligned along their way. A new gait descriptor, termed as gait
entropy volume (GEnV), is also proposed. GEnV focuses on captur-
ing 3D dynamical information of walking humans through the concept
of entropy. The proposed approach is experimentally validated on two
gait databases, achieving promising results in the problem of gait recog-
nition on unconstrained paths.

• D. López-Fernández, F.J. Madrid-Cuevas, A. Carmona-Poyato, R.
Muñoz-Salinas, and R. Medina-Carnicer. A new approach for multi-
view gait recognition on unconstrained paths. Journal of Visual
Communication and Image Representation, 38:396-406, 2016. ISSN
1047-3203. doi: 10.1016/j.jvcir.2016.03.020. url: http://www.

sciencedirect.com/science/article/pii/S1047320316300232

This paper proposes a new approach for multi-view gait recognition,
which focuses on recognizing people walking on unconstrained (curved
and straight) paths. A new rotation invariant gait descriptor is pre-
sented, which is based on 3D angular analysis of the movement of
the subject. This approach is experimentally validated on two gait
databases, and compared with related state-of-art work. Experimental
results demonstrate the effectiveness of this approach in the problem
of gait recognition on unconstrained paths.

• D. López-Fernández, F.J. Madrid-Cuevas, A. Carmona-Poyato, M.J.
Maŕın-Jiménez, and Rafael Muñoz-Salinas. The AVA Multi-View
Dataset for Gait Recognition. In Activity Monitoring by Multiple
Distributed Sensing, Lecture Notes in Computer Science, pages 26-
39. Springer International Publishing, 2014. ISBN 978-3-319-13322-5.
doi: 10.1007/978-3-319-13323-2 3. url: http://link.springer.com/

chapter/10.1007%2F978-3-319-13323-2_3

In this paper, we introduce the AVA Multi-View Dataset for Gait
Recognition (AVAMVG). This paper provides a comprehensive descrip-
tion of the AVAMVG database, including the studio environment and
camera setup, among other information. To validate the dataset, in
this paper are extended some appearance-based 2D gait recognition
methods to work with multi-view 3D data, obtaining very encouraging
results.

• D. López-Fernández, F. J. Madrid-Cuevas, A. Carmona-Poyato, R.
Muñoz-Salinas, and R. Medina-Carnicer. Multi-view gait recogni-
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tion on curved trajectories. In Proceedings of the 9th International
Conference on Distributed Smart Cameras, ICDSC’15, pages 116-121,
New York, NY, USA, 2015. ACM. ISBN 978-1-4503-3681-9. doi:
10.1145/2789116.2789122. url: http://dl.acm.org/citation.cfm?

id=2789122

This paper presents a method to recognize walking humans indepen-
dently of the viewpoint and regardless direction changes on curved
trajectories. This approach is based on 3D angular analysis of the
movement of the walking humans. In this paper, it is also described a
new rotation invariant gait descriptor which is computed directly from
silhouettes obtained from multiple views, by using calibrating informa-
tion instead of 3D reconstructions.

1.5 Structure of this document

This section explains how this document is organized. Chapter 2 contains
an extensive literature review. This chapter is divided into three sections,
view-dependent approaches, view-independent approaches and closely related
works. A review on public databases is presented in Chapter 3. This chapter
also describes a new dataset created in order to test multi-view gait recog-
nition approaches. Chapter 4 addresses the topic of 3D reconstruction and
gait alignment.

Chapter 5 studies the implementation of several morphological de-
scriptors and their application on aligned 3D sequences of walking people.
Chapter 6 presents an approach which focuses on capturing 3D dynamical in-
formation of gait by means of the concept of entropy information applied on
volumetric reconstructions of humans. A rotation invariant gait descriptor
which can be computed directly on 3D gait sequences without the previous
step of alignment is presented in Chapter 7. Finally, Chapter 8 presents the
main conclusions and future research lines derived from this dissertation.

7
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Chapter 2

Background and Literature
Review

The previous work can be categorized into two approaches: view-dependent
and view-independent approaches. The third section of this chapter de-
scribes in detail some methods which are closely related with our proposed
approaches. These methods are also used to compare and evaluate the per-
formance of our proposals.

2.1 View-dependent approaches

One of the earliest model-free and view-dependent approaches can be seen
in [35], where the width of the outer contour of the binarized silhouette
from a side view is used to build a descriptor which contains both structural
features and dynamic aspects of gait. Feature vectors derived from binary
silhouettes have been also used to train Hidden Markov Models [36]. The
contours of silhouettes have been used directly [37, 38], and through their
Fourier descriptors [39, 40].

In addition, the authors of [41] present a gait recognition method
which analyses the shape of the silhouette using Procrustes Shape Analysis
and Elliptic Fourier Descriptors. The Gait Energy Image (GEI) descriptor is
introduced by Han and Bhanu in [21], which is the average of all silhouette
images for a single gait cycle. Silhouette images are also used in Lam et

9
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al. [22] to generate the gait flow image (GFI). Liu et al. [42], to improve
the gait recognition performance, propose the computation of Histogram of
Oriented Gradients (HOG) [43] from popular gait descriptors as the GEI and
the Chrono-Gait Image (CGI) [44].

In [45], the authors try to find the minimum number of gait cycles
needed to carry out a successful recognition by using the GEI descriptor.
Mart́ın-Félez and Xiang [46] [47], using GEI as the basic gait descriptor,
propose a new ranking model for gait recognition. This new formulation of
the problem allows to leverage training data from different datasets, thus,
improving the recognition performance. Lai et al. [48] proposed a novel dis-
criminant subspace learning method (Sparse Bilinear Discriminant Analysis)
that extends methods based on matrix-representation discriminant analysis
to sparse cases, obtaining competitive results on gait recognition.

Based on the concept of GEI, Depth Energy Image (DEI) was defined
in [49], which is simply the average of the depth silhouettes taken along a
gait cycle, over the front view. GEI is also extended in [20] to consider depth
information from the side view, by means of a new feature called Depth
Gradient Histogram Energy Image (DGHEI). Depth information is also used
in Chattopadhyay et al. [50] to address the problem of occlusion in frontal
gait recognition. The Gait Entropy Image (GEnI) was presented in the work
of Bashir et al [51]. GEnI encodes in a single image, the randomness of pixel
values in the silhouette images over a complete gait cycle.

Analysis by morphological size distributions was proposed in [34]. In
this work, video cameras are placed in hallways to capture longer sequences
from the front view of walkers rather than the side view, which results in
more gait cycles per gait sequence. Despite the high recognition rate, the
main drawback of this model-free approach is the dependence with respect
to the viewpoint. To obtain a gait representation directly from silhouettes,
the authors proposed the use of a morphological descriptor, called Cover by
Rectangles, which is defined as the union of all the largest rectangles that
can fit inside a silhouette.

The Gait Energy Volume (GEV), a binary voxel-discretized volume
which is spatially aligned and averaged over a gait cycle, is presented in [52].
The authors apply GEV on partial reconstructions obtained with depth sen-
sors from the front view of the individual. An extended work from GEV that
combines the frontal-view depth gait image and side-view 2D gait silhouette
by means of a back-filling technique is presented in [53]. A spatio temporal

10
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representation based on point clouds in a spherical coordinate space was pro-
posed in [54], where frontal 3D point clouds of humans obtained with stereo
cameras are used.

In [55], a 3D approximation of a Visual Hull (VH) [56] is used to design
a multi-modal recognition approach. Although a VH model is computed, a
gait recognition scheme based on silhouette analysis is applied, which restricts
a large amount of discriminant information because the recognition is based
on single view silhouette analysis, instead of analyse 3D information. Seely
et al. [57] use 3D volumetric data to synthesise silhouettes from a fixed
viewpoint relative to the subject. The resulting silhouettes are then passed
to a standard 2D gait analysis technique, such as the average silhouette.

Ariyanto et al. [58] propose a model-fitting algorithm, correlation
filters and dynamic programming to extract gait kinematics features. They
use a structural model including articulated cylinders with 3D Degrees of
Freedom (DoF) which are fitted to a visual hull shape to model the human
lower legs. In [59], 3D data collected from a projector-camera system is used
to fit 3D body models and reconstruct synthetic poses in a gait cycle.

2.2 View-independent approaches

Appearance changes due to viewing angle changes cause difficulties for most
of the model-free gait recognition methods. This situation cannot be easily
avoided in practical applications. There are three major approach categories
to sort out this problem, namely: (1) approaches that construct 3D gait infor-
mation through multiple calibrated cameras; (2) approaches that extract gait
features which are invariant to viewing angle changes; (3) approaches whose
performance relies on learning mapping/projection relationship of gaits un-
der various viewing angles [25, 60].

Approaches of the first category are represented by Shakhnarovich
et al. [55], Bodor et al. [61] and Iwashita et al. [26]. In the work of
Shakhnarovich et al. [55], a polyhedral and surface-mapped 3D approxima-
tion of the visual hull [56] (VH) is used to design a multi-modal recognition
approach, that combines both face and gait recognition. Although a polyhe-
dral VH model is computed, the gait recognition scheme is based on silhouette
analysis, which does not take advantage of all the available 3D information
because the recognition is based on single view silhouette analysis, instead
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of exploiting the 3D models.

Bodor et al. [61] applies image-based rendering on a 3D VH model
to extract gait features under a required viewing angle. This approach tries
to classify the motion of a human in a view-independent way, but it has two
drawbacks. On the one hand it considers only straight paths to estimate
the position and orientation of a virtual camera. Tests were performed only
on straight path motions. On the other hand, not all the 3D information
available in the VH is used, because feature images are extracted from 2D
images rendered only from a single view.

In the work of Iwashita et al. [26], an observation angle at each frame
of a gait sequence is estimated from the walking direction, by fitting a 2D
polynomial curve to the foot points. Virtual images are synthesized from 3D
reconstructions, so that the observation angle of a synthesized image is the
same that the observation angle for the real image of the subject, which is
identified by using affine moment invariants extracted from images as gait
features. The advantage of this method is that the setup assumes multiple
cameras for training, but only one camera for testing. However, as in the
above two works, despite 3D volumes are used, descriptors are extracted from
2D images, so that, the amount of used information is restricted.

Approaches of the second category extract gait features which are
invariant to viewing angle changes. A method to generate a canonical view
of gait from any arbitrary view is described in [62]. The main disadvantage
of this method is that the synthesis of a canonical view is only feasible from
a limited number of initial views. The performance is significantly dropped
down when the angle between image plane and sagittal plane is large.

In [63], a method based on homography to compute view-normalized
trajectories of body parts obtained from monocular video sequences was pro-
posed, but this method only works properly for a limited range of views. Pla-
nar homography has also been used to reduce the dependency between the
motion direction and the camera optical axis [64], however this method seems
not to be applicable when the person is walking nearly parallel to the optical
axis. In [65] view-invariant features are extracted from GEI. Only parts of
gait sequences that overlap between views are selected for gait matching, but
this approach cannot cope with large view angle changes under which gait
sequences of different views can have little overlap.

A self-calibrating view-independent gait recognition based on model-
based gait features is proposed in [66]. The poses of the lower limbs are
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estimated based on markerless motion estimation. Then, they are recon-
structed in the sagittal plane using viewpoint rectification. This method has
two main drawbacks that are worth mentioning: (1) the estimation of the
poses of the limbs is not robust from markerless motion; (2) it is not applica-
ble for frontal view because the poses of the limbs become untraceable; and
(3) this method assume that subjects walk along a straight line segment.

In [67] is proposed the use of motion descriptors based on dense track-
lets (i.e. short-term point trajectories). This method is able to recognize
people in curved trajectories with promising results. In [68] were proposed
and evaluated diverse strategies to improve tracklet-based gait recognition
systems. Two sets of tracklet-based features were combined with audio fea-
tures in [69], to evaluate how the fusion of audio and visual features can help
in the challenging task of people identification based on their gait.

Zhao et al. [70] present a multi-camera approach for gait tracking
and recognition. The video sequences are used as input, and then a human
3D model is set up. The lengths of key segments are extracted as static
parameters, and the motion trajectories of lower limbs are used as dynamic
features. A skeletal 3D model is also used in the work of Kastaniotis et
al. [71], which presents a framework for pose-based gait recognition and
identification, as well as gender recognition.

The approaches of the third category are based on learning map-
ping/projection relationship of gaits under various viewing angles. The
trained relationship may normalize gait features from different viewing angles
into shared feature spaces. An example from this category can be read in
[72], where LDA-subspaces are learned to extract discriminative information
from gait features under each viewing angle.

A View Transformation Model (VTM) was introduced by [73] to trans-
form gait features from different views into the same view. The method of
Makihara et al. [73] creates a VTM based on frequency-domain gait features,
obtained through Fourier Transformation. To improve the performance of
this method, Kusakunniran et al. [74] created a VTM based on GEI opti-
mized by Linear Discriminant Analysis. A sparse-regression-based VTM for
gait recognition under various views is also proposed in [25]. However, this
method cannot deal with changes in the direction of motion.

Although methods of the third category have better ability to cope
with large view angle changes compared to other works, some common chal-
lenges are the following [25]: (1) performance of gait recognition decreases as
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the viewing angle increases; (2) since the methods rely on supervised learn-
ing, it will be difficult for recognizing gait under untrained/unknown viewing
angles, (3) these methods implicitly assume that people walk along straight
paths and that their walking direction does not change during a single gait
cycle (i.e., people do not walk along curved trajectories). However, people
often walk on curved trajectories in order to turn a corner or to avoid an
obstacle.

2.3 Closely related work

As it was described in Section 2.1, Gait Entropy Image (GEnI) [51] encodes
in a single image, the randomness of pixel values in the silhouette images
over a complete gait cycle. More specifically, considering the intensity value
of the silhouettes at a fixed pixel location as a discrete random variable,
entropy measures the uncertainty associated with the random variable over
a complete gait cycle. Dynamic body areas which undergo consistent relative
motion during a gait cycle (e.g. leg, arms) lead to high gait entropy values,
whereas those areas that remain static (e.g. torso) give rise to low values.
This representation is also less sensitive to changes in covariate conditions
such as carrying and clothing.

A human silhouette is extracted from the side view of the gait se-
quence. After applying size normalization and horizontal alignment to each
silhouette image, gait cycles are segmented by estimating the gait frequency
using a maximum entropy estimation technique. GEnI is defined as

GEnI(x, y) = −
K∑
k=1

pk(x, y)log2pk(x, y), (2.1)

where x, y are the pixel coordinates and pk(x, y) is the probability of the pixel
(x, y) for the label k ∈ K. The silhouettes are binary images, and therefore
K : {0, 1}, so that p1(x, y) = 1

T

∑T
t=1 I(x, y), and p0(x, y) = 1 − p1(x, y),

where T is the length of the gait cycle and I is the binary image.

In [75], the use of the GEnI descriptor is proposed to distinguish the
dynamic and static areas of a GEI by measuring Shannon entropy at each
pixel location. In this work the authors use the GEnI to perform a feature
selection, based on the relevance of gait features extracted from GEI, instead
of using GEnI as gait descriptor directly as in [51].
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Figure 2.1: Several examples of GEnI, computed over a gait cycle. The gray
level represents the entropy value in a pixel (x, y). As can be seen, legs and
arms have high gait entropy value, whereas static areas as torso have low
values of entropy.

These approaches [51, 75] have some drawbacks that are worth men-
tioning. First, these methods are view-dependent and therefore the individ-
uals cannot walk freely in the scene. Second, they are based on computing
entropy over the side view of the gait sequence. However, some people tend to
swing their arms from side to side while walking, and they often rotate their
torso slightly. This fact lead us to think that some dynamic and structural
information of the individual is lost when GEI or GEnI is only computed
over the side view of the gait sequence, because by just using a single 2D
image view, a large part of 3D gait information is discarded. The Fig. 2.1
shows the GEnI, computed over several gait cycles.

Another work closely related with our approaches is that of Barnich et
al. [34]. In this work, the authors propose the analysis by morphological size
distributions, by means of the Cover By Rectangles descriptor, proposed in
[76]. Considering a silhouette S, the Cover by Rectangles, denoted by C(S )
is defined as the union of all the largest rectangles that can fit inside of S.
Figure 2.2 shows a graphical description of C(S ). This union is unique and
the cover C(S ) has the following useful properties:

• The elements of the set overlap each other introducing redundancy (i.e.
robustness).

• Each element (rectangle) of C(S ) cover at least one pixel that belongs
to no other rectangle.

• When displayed in the frame, the union of all rectangles reconstructs
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Figure 2.2: The Cover by Rectangles, C(S ), is the union of all the largest
rectangles that can be wedged inside of the silhouette.

S so that no information is ever lost.

The number of largest rectangles that will fit inside a binary silhouette
can be very high (more than a thousand). It is thus impractical to use all
the rectangles directly as a set of features. In order to find a more compact
representation, the authors propose to operate in a size distribution density,
as shown in Figure 2.3. As can be seen, the largest number of rectangles con-
taining a given pixel is to be found inside the torso, and the tallest rectangles
pass through both the legs and the head.

From a formal point of view, let α be the cardinality of C(S ), i.e.
α = #C(S). The rectangles of C(S) are indexed with a parameter d, so that
Rd(d = 1, ..., α) are the rectangles of C(S). The width and height of Rd are,
respectively, denoted by wd y hd; they are upper-bounded by wmax and hmax:
∀d, wd ≤ wmax and hd ≤ hmax. In order to build histograms, the widths and
heights of the rectangles Rd are partitioned into M bins BW (i) and N bins
BH(j)

BW (i) =]iw
max

M
, (i+ 1)w

max

M
],

BH(j) =]j h
max

N
, (j + 1)h

max

N
],

where i = 0, ...,M − 1 y j = 0, ..., N − 1.

Following the above notations, the histogram histW (i) of the normal-
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Figure 2.3: Size distributions based on the description provided by the cover
C(S ). The image (a) represents a silhouette of a walking person, observed
from a frontal viewpoint. A gray level of pixel (x, y) in images (b), (c) and
(d) displays respectively the density of rectangles, the width of the widest
rectangle and the height of the tallest rectangle where all these rectangles
contain pixel (x, y).

ized widths is defined as

histW (i) = 1
α

#{Rd|wd ∈ BW (i)},

the histogram of the normalized heights similarly as

histH(j) = 1
α

#{Rd|hd ∈ BH(i)},

and the two-dimensional histogram histWxH(i, j) as

histWxH(i, j) = 1
α

#{Rd|wd ∈ BW (i), hd ∈ BH(j)}.

These histograms are normalized respect to the largest rectangle of
C(S ). In a continuous space, they would be scale invariant. Of the three
histograms (histW (i), histH(j), histWxH(i, j)), the last one best describes S.
However, its dimensionality is proportional to the product of the numbers
of bins (MxN), which might be too high. In order to solve this tractabil-
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ity issue, it is introduced the composite histogram histW+H(k) , with k =
0, ...,M +N − 1 defined as the strict concatenation of histtW (i) and histH(j)
(marginal distributions). The authors introduce the following gait signature

GWxH
CR (i, j, t) =

histWxH(i, j, t− (L− 1)), ..., histWxH(i, j, t− 1), histWxH(i, j, t),

and a shortened version

GW+H
CR (k, t) = histW+H(k, t− (L− 1)), ..., histW+H(k, t− 1), histW+H(k, t),

which consists of n-uples of L consecutive histograms at time t. Video
cameras are placed in hallways to capture longer sequences from the front
view of walkers rather than the side view, which results in more gait cycles
per gait sequence. Despite the high recognition rate, the main drawback of
this model-free approach is the dependence with respect to the viewpoint,
which restricts the movement of the individuals to just straight paths.

As it was described in Section 2.1, Seely et al. [57] use 3D volumetric
data to synthesise silhouettes from a fixed viewpoint relative to the subject.
In this work, the resulting silhouettes are then passed to a standard 2D
gait analysis technique, such as the average silhouette. The sequences are
collected from a multi-biometric tunnel, where the subjects just walk straight.

For the analysis, silhouettes are synthesized from a side-on, front-
on and top-down orthogonal viewpoints, by taking the union of the voxels
along X, Y and Z-axis, respectively, where the X-axis spans left to right,
Y-axis spans front to back and Z-axis spans from the top to the bottom.
The average silhouette is calculated in a similar manner to that of Han and
Bhanu [21], where the centre of mass Ci = (Ci,x, Ci,y) is found for each frame
i. The average silhouette is the found by summing the centre of mass aligned
silhouettes

A(x, y) =
1

M

∑M−1
i=0 Ji(x− Ci,x, y − Ci,y), (2.2)

where A is the average silhouette, M is the number of frames in the
gait cycle and J is the synthesized image of frame i. So that, this method
requires the sequence to be split into gait cycles. The derived average sil-
houette is scale normalised so that it is 64 pixels high, whilst preserving the
aspect ratio. That average silhouette is then treated as the feature vector.
As well as the above works, this method do not allow the subjects to walk
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freely in the scene because the view of the virtual silhouettes depends on the
trajectory of the 3D volumes.
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Chapter 3

Gait Datasets

Most current gait recognition methods require gait sequences captured from
a single view, namely, from the side view or from the front view of a walk-
ing person [40, 77, 78, 79, 80, 75, 34, 21]. Hence, there are many existing
databases which capture the gait sequences from a single view. However, new
challenges in the topic of gait recognition, such as achieving the independence
from the camera point of view, usually require multi-view datasets. In fact,
articles related to multi-view and cross-view gait recognition have been in-
creasingly published [26, 25, 81, 82, 66, 74, 61, 73, 67].

First, some of the existing multi-view datasets were recorded in con-
trolled conditions, and in some cases, they made use of a treadmill [83, 84, 85].
An inherent problem associated with walking on a treadmill is that the hu-
man gait is not as natural as it should be, the gait speed is usually constant,
and the subjects cannot turn right or left. They are not representative of hu-
man gait in a real world. Secondly, for other multi-view datasets, calibration
information is not provided or cameras are not synchronized, e.g. CASIA
Dataset B [86]. Some of the gait recognition methodologies require camera
calibration to deal with 3D information.

In addition, there are not many multi-view datasets specifically de-
signed for gait. Some of them are designed for action recognition, and there-
fore they do not contain gait sequences of enough length as to contain several
gait cycles, because gait is a subset of them.

For this reason, we have created a new indoor dataset to test gait
recognition algorithms, the “AVA Multi-View Dataset for Gait Recognition”

21



Contributions to Gait Recognition Using Multiple-Views

(AVAMVG) [87]. In Section 3.3 we briefly describe the camera setup, the
database content, and the preprocessing steps carried out in order to further
increase the applicability of the database. This dataset can be applied in
workspaces where subjects cannot show the face or use the fingerprint, and
even they have to wear special clothing, e.g. a laboratory. Furthermore, in
this dataset people appear walking along both straight and curved paths,
which makes this dataset suitable to test methods like [26], which are able
to cope with curved paths. The cameras have been calibrated and therefore,
methods based on 3D information can use this dataset to test, which is free
only for research purposes.

Section 3.2 briefly describes the “Kyushu University 4D gait dataset”,
a recently and publicly available multi-view dataset which has also been used
to test our gait recognition approaches, because it contains videos of people
walking on both curved and straight trajectories.

3.1 Current datasets for gait recognition

The chronologic order of appearance of the different human action video
datasets runs parallel to the challenges that the scientific community has
been considering to face the problem of automatic and visual gait recognition.
From this point of view, datasets can be divided into two groups: datasets
for single-view gait recognition and datasets for multi-view gait recognition.
Besides, the datasets can be divided in two subcategories: indoor and outdoor
datasets.

Regarding single view datasets, indoor gait sequences are provided
by the OU-ISIR Biometric Database [83]. OU-ISIR Treadmill Database is
composed by four datasets, called A, B, C and D. Dataset A is composed
of gait sequences of 34 subjects from side view with speed variation. The
dataset B is composed of gait sequences of 68 subjects from side view with
clothes variation up to 32 combinations. OU-ISIR gait dataset D contains
370 gait sequences of 185 subjects observed from the side view. The dataset D
focuses on the gait fluctuations over a number of periods. The OU-ISIR gait
dataset C focuses on view variation, but it is currently under preparation,
and as far as we know, information about this has not been released yet.
The OU-ISIR Large Population Dataset contains 4016 subjects, walking on
straight paths. It is distributed in a form of silhouette sequences registered
and size-normalized to 88 by 128 pixels size. The subjects are recorded by
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just two cameras, and calibration information is not provided. Samples of
still images (captured color images) are shown in Figure 3.1.

Figure 3.1: Samples from OU-ISIR Large Population Dataset.

In contrast with OU-ISIR, the first outdoor single-view dataset was
from the Visual Computing Group of the UCSD (University of California, San
Diego) [88]. The UCSD gait database includes six subjects with seven image
sequences of each, from the side view. In addition to UCSD gait database,
one of the most used outdoor datasets for single-view gait recognition is the
USF HumanID database [15]. This database consists of 122 persons walking
in elliptical paths in front of the camera.

Other outdoor walking sequences are provided in CASIA database,
from the Center for Biometrics and Security Research of the Institute of
Automation of the Chinese Academy of Sciences. CASIA Gait Database is
composed by three datasets, one indoor and the other two outdoor. The
indoor dataset can be also considered as a multi-view dataset, and therefore
it will be discussed later. The outdoors datasets are named as Dataset A
and Dataset C (infrared dataset), and they are described below.

Dataset A [89] includes 20 persons. Each person has 12 image se-
quences, 4 sequences for each of the three directions, i.e. parallel, 45 degrees
and 90 degrees with respect to the image plane. The length of each sequence
is not identical due to the variation of the walker’s speed. Dataset C [90]
was collected by an infrared (thermal) camera. It contains 153 subjects and
takes into account four walking conditions: normal walking, slow walking,
fast walking, and normal walking with a bag. The videos were all captured
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at night.

More outdoor gait sequences are also found in the HID-UMD database
[91], from University of Maryland. This database contains walking sequences
of 25 people in 4 different poses. These are frontal view/walking-toward,
frontal view/walking-away, frontal-parallel view/toward left, frontal-parallel
view/toward right.

A database which contains both indoor and outdoor sequences is
the Southampton Human ID gait database (SOTON Database) [84]. This
database consists of a large population, which is intended to address whether
gait is individual across a significant number of people in normal conditions,
and a small population database, which is intended to investigate the ro-
bustness of biometric techniques to imagery of the same subject in various
common conditions.

Currently, in real problems, more complex situations are managed.
Thus, for example, outdoor scenarios may be appropriate to deal with real
surveillance situations, where occlusions occur frequently. To address the
challenge of occlusions, the TUM-IITKGP Gait Database is presented in
[92]. On the other hand, some gait recognition methods solely focus on
data extracted from a RGB video stream. The freely available TUM Gait
from Audio, Image and Depth (TUM-GAID) database is presented in [93] to
provide a means for multimodal gait recognition.

Other indoor and outdoor datasets have been specifically designed
for action recognition. However, it is possible to extract a subset of gait
sequences from them. Examples of this are Weizmann [94], KTH [95], Etiseo,
Visor[96] and UIUC [97]. The Weizmann database contains the walking
action among other 10 human actions, each action performed by nine people.
KTH dataset contains six types of human actions performed several times by
25 people in four different scenarios. ETISEO and Visor were created to be
applied in video surveillance algorithms. UIUC (from University of Illinois)
consists of 532 high resolution sequences of 14 activities (including walking)
performed by eight actors.

With the new gait recognition approaches that deal with 3D informa-
tion, new gait datasets for multi-view recognition have emerged. One of the
first multi-view published dataset was CASIA Dataset B[86]. Dataset B is a
large multi-view gait database. There are 124 subjects, and the gait data was
captured from 11 viewpoints. However, neither the camera position nor the
camera orientation is provided, and the videos are not synchronized. Figure
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3.2 shows a sample from CASIA Database B.

Figure 3.2: Samples from CASIA Dataset B.

As can be seen in OU-ISIR and SOTON databases among others,
treadmills are widely used, nonetheless, an inherent problem associated with
walking on a treadmill is that the human gait is not as natural as in real
situations. An example of using of the treadmill in a multiview dataset is
presented in the CMU Motion of Body (MoBo) Database [85], which contains
videos of 25 subjects walking on a treadmill from multiple views. Figure 3.3
shows a sample from MoBo Database. A summary of the current freely
available gait datasets is shown in Table 3.2.

Other multiview datasets are specifically designed for action recogni-
tion rather than gait recognition. A summary of them can be seen in Table
3.1. The i3DPost Multi-View Dataset [98] was recorded using a convergent
eight camera setup to produce high definition multi-view videos, where each
video depicts one of eight people performing one of twelve different human
actions. A subset for gait recognition can be obtained from this dataset. The
actors enter the scene from different entry points, which seems to be suitable
to test view-invariant gait recognition algorithms. However, the main draw-
back of this subset is the short length of the gait sequences, extracted from
a bigger collection of actions.

The Faculty of Science, Engineering and Computing of Kingston Uni-
versity collected in 2010 a large body of human action video data named
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Figure 3.3: Example of images from the CMU Motion of Body (MoBo)
Database.

Table 3.1: Multi-view action datasets including walking. This table shows
some of the most popular multiview action datasets, which contain walking
sequences among other activities.

Database Actions Subjects Source Views Path Year
i3DPost [98] 13 8 Indoor 8 Straight 2009
MuHAVi [99] 17 14 Indoor 8 Straight 2010
IXMAS [100] 11 10 Indoor 5 Closed curve 2006

MuHAVi (Multicamera Human Action Video dataset) [99]. It provides a re-
alistic challenge to objectively compare action recognition algorithms. There
are 17 action classes (including walk and turn back) performed by 14 actors.
A total of eight non-synchronized cameras are used. The main weakness of
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MuHAVi is that the walking activity is carried out in an unique predefined
trajectory. Due to this, this dataset is not very suitable to compare view-
invariant gait recognition algorithms. Moreover, this dataset was specifically
designed to test action recognition algorithms, and it does not contain gait
sequences of enough length.

The INRIA1 Xmas Motion Acquisition Sequences (IXMAS) database,
reported in [100], contains five-view video and 3D body model sequences
for eleven actions and ten persons. A subset for gait recognition challenges
can be obtained from the INRIA IXMAS database. However, humans ap-
pear walking in very closed circle paths. Consequently, the dataset does not
provide very realistic gait sequences.

1“Institut National de Recherche en Informatique et en Automatique”, France
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Chapter 3. Gait Datasets

3.2 Kyushu University 4D gait dataset

Kyushu University 4D Gait Database (KY4D)2 [26] is composed of sequential
3D models and image sequences of 42 subjects walking along four straight
and two curved trajectories, as indicated by black lines in Figure 3.4. The
sequences were recorded by 16 cameras, at a resolution of 1032 × 776 pix-
els. As can be seen in Figure 3.4, KY4D gait sequences are captured by 16
cameras forming rings at two heights. The lower level comprises the cameras
{7451527, 7172435, 7121059, 7451462, 7451476, 7340706, 7451471, 7230135},
whereas the upper level comprises the cameras {7451465, 7340709, 7340697,
7451466, 7451477, 7340692, 7451468, 7340700}.

KY4D provide sequential 3D models of subjects, as well as the in-
trinsic and extrinsic parameters of each camera. The radius of the curved
trajectories varies between 1.5m and 3.0m. The height of the lower camera
set is approximately 1.2m, and the distance from each camera to the center
of the studio is about 3.5m. Figure 3.5 shows a sample extracted from this
dataset. Each frame corresponds to a camera view in a certain time t.

xxxxxxx

7451465

7172435

7340709

7121059

7451468

7451471

7340692

7451477

74514767451527

Camera ID

7230135 7340706

7340700

7340697
7451466

7451462

Figure 3.4: Experimental setup of KY4D.

2Publicly available at: http://robotics.ait.kyushu-u.ac.jp/research-e.php?content=db
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Contributions to Gait Recognition Using Multiple-Views

Figure 3.5: Example of silhouettes from KY4D multiview dataset.
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Chapter 3. Gait Datasets

3.3 The AVA Multi-View Dataset for Gait

Recognition

In this section we present the AVA Multi-View Dataset for Gait Recognition
(AVAMVG)3 [87]. This paper briefly describe the camera setup, the database
content, and the preprocessing steps carried out in order to further increase
the applicability of this database.

3Publicly available at: http://www.uco.es/grupos/ava/node/41

31



Contributions to Gait Recognition Using Multiple-Views

32



The AVA Multi-View Dataset for Gait
Recognition
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Abstract. In this paper, we introduce a new multi-view dataset for
gait recognition. The dataset was recorded in an indoor scenario, using
six convergent cameras setup to produce multi-view videos, where each
video depicts a walking human. Each sequence contains at least 3 com-
plete gait cycles. The dataset contains videos of 20 walking persons with
a large variety of body size, who walk along straight and curved paths.
The multi-view videos have been processed to produce foreground sil-
houettes. To validate our dataset, we have extended some appearance-
based 2D gait recognition methods to work with 3D data, obtaining very
encouraging results. The dataset, as well as camera calibration informa-
tion, is freely available for research purposes.

1 Introduction

Research on human gait as a biometric for identification has received a lot of
attention due to the apparent advantage that it can be applied discreetly on
the observed individuals without needing their cooperation. Because of this, the
automation of video surveillance is one of the most active topics in Computer
Vision. Some of the interesting applications are, among others, access control,
human-machine interface, crowd flux statistics, or detection of anomalous behav-
iours [1].

Most current gait recognition methods require gait sequences captured from a
single view, namely, from the side view or from the front view of a walking person
[2–9]. Hence, there are many existing databases which capture the gait sequences
from a single view. However, new challenges in the topic of gait recognition, such
as achieving the independence from the camera point of view, usually require
multi-view datasets. In fact, articles related to multi-view and cross-view gait
recognition have been increasingly published [10–16].

First, some of the existing multi-view current datasets were recorded in con-
trolled conditions, and in some cases, they made use of a treadmill [17–19]. An
inherent problem associated with walking on a treadmill is that the human gait

c© Springer International Publishing Switzerland 2014
P.L. Mazzeo et al. (Eds.): AMMDS 2014, pp. 26–39, 2014.
DOI: 10.1007/978-3-319-13323-2 3



The AVA Multi-View Dataset for Gait Recognition 27

is not as natural as it should be, the gait speed is usually constant, and the
subjects cannot turn right or left. They are not representative of human gait
in a real world. Secondly, for other multi-view datasets, calibration information
is not provided, e.g. [20]. Some of the gait recognition methodologies require
camera calibration to deal with 3D information.

In addition, there are not many multi-view datasets specifically designed for
gait. Some of them are designed for action recognition, and therefore they do
not contain gait sequences of enough length as to contain several gait cycles,
because gait is a subset of them.

For this reason, we have created a new indoor dataset to test gait recognition
algorithms. This dataset can be applied in workspaces where subjects cannot
show the face or use the fingerprint, and even they have to wear special clothing,
e.g. a laboratory. Furthermore, in this dataset people appear walking along both
straight and curved paths, which makes this dataset suitable to test methods like
[10]. The cameras have been calibrated and the methods based on 3D information
can use this dataset to test. The dataset is free only for research purposes.

This paper is organized as follows. Section 2 describes current datasets for
gait recognition. Section 3 describes the AVA Multi-View Dataset for Gait Recog-
nition (AVAMVG). Section 4 shows several application examples carried out to
validate our database. Finally, we conclude this paper in Sect. 5.

2 Current Datasets for Gait Recognition

The chronologic order of appearance of the different human action video datasets
runs parallel to the challenges that the scientific community has been considering
to face the problem of automatic and visual gait recognition. From this point
of view, datasets can be divided into two groups: datasets for single-view gait
recognition and datasets for multi-view gait recognition. Besides, the datasets
can be divided in two subcategories: indoor and outdoor datasets.

Regarding single view datasets, indoor gait sequences are provided by the
OU-ISIR Biometric Database [17]. OU-ISIR database is composed by four tread-
mill datasets, called A, B, C and D. Dataset A is composed of gait sequences of
34 subjects from side view with speed variation. The dataset B is composed of
gait sequences of 68 subjects from side view with clothes variation up to 32 com-
binations. OU-ISIR gait dataset D contains 370 gait sequences of 185 subjects
observed from the lateral view. The dataset D focuses on the gait fluctuations
over a number of periods. The OU-ISIR gait dataset C is currently under prepa-
ration, and as far as we know, information about this has not been released yet.

In contrast with OU-ISIR, the first available outdoor single-view database
was from the Visual Computing Group of the UCSD (University of Califor-
nia, San Diego) [21]. The UCSD gait database includes six subjects with seven
image sequences of each, from the side view. In addition to UCSD gait database,
one of the most used outdoor datasets for single-view gait recognition is the
USF HumanID database [22]. This database consists of 122 persons walking in
elliptical paths in front of the camera.
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Other outdoor walking sequences are provided in CASIA database, from the
Center for Biometrics and Security Research of the Institute of Automation of
the Chinese Academy of Sciences. CASIA Gait Database is composed by three
datasets, one indoor and the other two outdoor. The indoor dataset can be also
considered as a multi-view dataset, and therefore it will be discussed later. The
outdoors datasets are named as Dataset A and Dataset C (infrared dataset),
and they are described below.

Dataset A [23] includes 20 persons. Each person has 12 image sequences, 4
sequences for each of the three directions, i.e. parallel, 45 degrees and 90 degrees
with respect to the image plane. The length of each sequence is not identical due
to the variation of the walker’s speed. Dataset C [24] was collected by an infrared
(thermal) camera. It contains 153 subjects and takes into account four walking
conditions: normal walking, slow walking, fast walking, and normal walking with
a bag. The videos were all captured at night.

More outdoor gait sequences are also found in the HID-UMD database [25],
from University of Maryland. This database contains walking sequences of 25
people in 4 different poses (frontal view/walking-toward, frontal view/walking-
away, frontal-parallel view/toward left, frontal-parallel view/toward right).

A database containing both indoor and outdoor sequences is the Southamp-
ton Human ID gait database (SOTON Database) [18]. This database consists
of a large population, which is intended to address whether gait is individual
across a significant number of people in normal conditions, and a small pop-
ulation database, which is intended to investigate the robustness of biometric
techniques to imagery of the same subject in various common conditions.

Currently, in real problems, more complex situations are managed. Thus,
for example, outdoor scenarios may be appropriate to deal with real surveil-
lance situations, where occlusions occur frequently. To address the challenge of
occlusions, the TUM-IITKGP Gait Database is presented in [26].

Other indoor and outdoor datasets have been specifically designed for action
recognition. However, it is possible to extract a subset of gait sequences from
them. Examples of this are Weizmann [27], KTH [28], Etiseo, Visor [29] and
UIUC [30]. The Weizmann database contains the walking action among other
10 human actions, each action performed by nine people. KTH dataset contains
six types of human actions performed several times by 25 people in four different
scenarios. ETISEO and Visor were created to be applied in video surveillance
algorithms. UIUC (from University of Illinois) consists of 532 high resolution
sequences of 14 activities (including walking) performed by eight actors.

With the new gait recognition approaches that deal with 3D information, new
gait datasets for multi-view recognition have emerged. One of the first multi-view
published dataset was CASIA Dataset B [20]. Dataset B is a large multi-view
gait database. There are 124 subjects, and the gait data was captured from 11
viewpoints. Neither the camera position nor the camera orientation are provided.

As can be seen in OU-ISIR and SOTON databases among others, treadmills
are widely used, nonetheless, an inherent problem associated with walking on a
treadmill is that the human gait is not as natural as it should be. An example
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of using of the treadmill in a multiview dataset is presented in the CMU Motion
of Body (MoBo) Database [19], which contains videos of 25 subjects walking on
a treadmill from multiple views. A summary of the current freely available gait
datasets is shown in Table 2.

Table 1. Multi-view action datasets that include walking as an action. This
table shows some of the most popular multiview action datasets, which contain walking
sequences among other activities.

Database Actions Subjects Source Views Path Year

i3DPost [31] 13 8 Indoor Eight views Straight 2009

MuHAVi [32] 17 14 Indoor Eight views Straight 2010

IXMAS [33] 11 10 Indoor Five views Closed curve 2006

Other multiview datasets, specifically designed for action recognition rather
than gait recognition, are described then. A summary of them can be seen in
Table 1. The i3DPost Multi-View Dataset [31] was recorded using a convergent
eight camera setup to produce high definition multi-view videos, where each
video depicts one of eight people performing one of twelve different human
actions. A subset for gait recognition can be obtained from this dataset. The
actors enter the scene from different entry points, which seems to be suitable
to test invariant view gait recognition algorithms. However, the main drawback
of this subset is the short length of the gait sequences, extracted from a bigger
collection of actions.

The Faculty of Science, Engineering and Computing of Kingston University
collected in 2010 a large body of human action video data named MuHAVi
(Multicamera Human Action Video dataset) [32]. It provides a realistic chal-
lenge to objectively compare action recognition algorithms. There are 17 action
classes (including walk and turn back) performed by 14 actors. A total of eight
non-synchronized cameras are used. The main weakness of MuHAVi is that the
walking activity is carried out in an unique predefined trajectory. Due to this,
this dataset is not very suitable to compare invariant-view gait recognition algo-
rithms. This dataset was specifically designed to test action recognition algo-
rithms, and it does not contain gait sequences of enough length.

The INRIA Xmas Motion Acquisition Sequences (IXMAS) database, reported
in [33], contains five-view video and 3D body model sequences for eleven actions
and ten persons. A subset for gait recognition challenges can be obtained from the
INRIA IXMAS database. However, humans appear walking in very closed circle
paths. Consequently, the dataset does not provide very realistic gait sequences.

3 AVA Multi-view Dataset for Gait Recognition

In this section we briefly describe the camera setup, the database content, and
the preprocessing steps carried out in order to further increase the applicability
of the database.
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3.1 Studio Environment and Camera Setup

Six convergent IEEE-1394 FireFly MV FFMV-03M2C cameras are equipped in
the studio where the dataset was recorded, spaced in a square of 5.8 m of side
at a height of 2.3 m above the studio floor. The cameras provide 360◦ coverage
of a capture volume of 5 m × 5 m × 2.2 m.

A natural ambient illumination is provided by four windows through which
natural light enters into the scene. Video gait sequences were recorded at different
times of day and the cameras were positioned above the capture volume and were
directed downward.

Instead of using a screen backdrop of a specific color, as in [31], the background
of the scene is the white wall of the studio. However, to facilitate foreground seg-
mentation, the actors wear clothes of different color than the background scene.

Human gait is captured in 4:3 format with 640 × 480 pixels at 25 Hz. Syn-
chronized videos from all six cameras were recorded uncompressed directly to
disk with a dedicated PC capture box. All cameras were calibrated to extract
their intrinsic (focal length, centre of projection, and distortion coefficients) and
extrinsic (pose, orientation) parameters.

To get the intrinsics of each camera, we used a classical black-white chess-
board based technique [34] (OpenCV), while for the extrinsics we used the Aruco
library [35] whose detection of boards (several markers arranged in a grid) have
two main advantages. First, since there is more than one marker, it is less likely
to lose them all at the same time. Second, the more markers detected, the more
points available for computing the camera extrinsics. An example of extrinsics
calibration based on Aruco library is shown in Fig. 1. Calibration of the studio
multi-camera system can be done in less than 10 min using the above referenced
techniques.

Fig. 1. 3D artifact with Aruco [35] board of markers, used for getting the pose
and orientation of each camera.

3.2 Database Description

Using the camera setup described above, twenty humans (4 females and 16
males), participated in ten recording sessions each. Consequently, the database
contains 200 multi-view videos or 1200 (6 × 200) single view videos. In the fol-
lowing paragraphs we describe the walking activity carried out by each actor of
the database.
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Fig. 2. Workspace setup for dataset recording, where {c1, ..., c6} represent the set
of cameras of the multiview dataset and {t1, ..., t9} represent the different trajectories
followed by each actor of the dataset.

Ten gait sequences were designed before the recording sessions. All actor
depict three straight walking sequences ({t1, ..., t3}), and six curved gait
sequences ({t4, ..., t9}), as if they had to turn a corner. The curved paths are
composed by a first section in straight line, then a slight turn, and finally a final
straight segment. These paths are graphically described in Fig. 2. In the last
sequence actors describe a figure-eight path (t10).

3.3 Multi-view Video Preprocessing

The raw video sequences were preprocessed to further increase the applicability
of the database. To obtain the silhouettes of actors, we have used the Hor-
prasert’s algorithm [36]. This algorithm is able to detect moving objects in a
static background scene that contains shadows on color images, and it is also
able to deal with local and global perturbations such as illumination changes,
casted shadows and lightening.

In Fig. 3, several walking subjects of the AVA Multi-View Dataset for Gait
Recognition are shown.

4 Database Application Examples

In this section, we carry out several experiments to validate our database. First,
we use a Shape from Silhouette algorithm [37] to get 3D reconstructed human
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Fig. 3. Example of our multiview dataset. People walking in different directions,
from multiple points of view.

Fig. 4. 3D reconstructed gait sequences. Example of reconstructed gait sequences,
sampled at 2 Hz, where each point represents the center of a squared voxel.
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volumes along the gait sequence. The whole gait sequences can be reconstructed,
as shown in Fig. 4. Then, these gait volumes are aligned and centred respect to
a global reference system. After this, we can get rendered projections of these
volumes to test 2D-based gait recognition algorithms. By this way, we can test
view-dependent gait recognition algorithms on any kind of path, either curved
or straight.

4.1 Gait Recognition Based on Rendered Gait Entropy Images

One of the most cited silhouette-based representations is the Gait Energy Image
(GEI) [9], which represents gait using a single grey scale image obtained by
averaging the silhouettes extracted over a complete gait cycle. In addition to
GEI, a gait representation called Gait Entropy Image (GEnI) is proposed in [7].
GEnI encodes in a single image the randomness of pixel values in the silhouette
images over a complete gait cycle. Thus it is a compact representation which
is an ideal starting point for feature selection. In fact, GEnI was proposed to
measure the relevance of gait features extracted from the GEI.

As we have aligned gait volumes, we can use rendered side projections of the
aligned volumes to compute the GEI. In addition, the GEnI can be computed
by calculating Shannon entropy for each pixel of the silhouette images, rendered
from side projections of the aligned volumes. In this way, the methods proposed
in [7,9] can be tested in a view invariant way. Figure 5 shows the GEI and GEnI
descriptors computed over rendered images of the aligned sequence.

Fig. 5. GEI and GEnI. The leftmost image shows a walking subject. The recon-
structed volumes are aligned along the gait sequence, as can be seen in the second
image. The two last images show the GEI and GEnI computed over rendered images
of the aligned sequence, respectively.

We designed a hold-out experiment where the gallery set is composed by
the 1st, 2nd, 4th, 5th, 7th and 8th sequences and probe set is formed by 3rd,
6th, and 9th sequences of the AVA Multi-View dataset. The recognition rate
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obtained with the application of the gait descriptors proposed in [7,9] are shown
in Table 3.

Table 3. Results of the algorithm proposed in [7] on the AVA Multi-View
dataset, based on silhouettes. We report the recognition rate in %, comparing GEI
with the GEnI by direct template matching, using the AVA Multiview Dataset.

Database (probe) GEI GEnI

AVA Multiview Dataset (AVA B) 94.6 98.1

4.2 Front View Gait Recognition by Intra- and Inter-frame
Rectangle Size Distribution

In [8], video cameras are placed in hallways to capture longer sequences from the
front view of walkers rather than the side view, which results in more gait cycles
per gait sequence. To obtain a gait representation, a morphological descriptor,
called Cover by Rectangles (CR), is defined as the union of all the largest rec-
tangles that can fit inside a silhouette. Despite of the high recognition rate, a
drawback of this approach is the dependence with respect to the angle of the
camera.

According to the authors, Cover by Rectangles has the following useful prop-
erties: (1) the elements of the set overlap each other, introducing redundancy
(i.e. robustness), (2) each rectangle covers at least one pixel that belongs to no
other rectangle, and (3) the union of all rectangles reconstructs the silhouette so

Fig. 6. Cover by Rectangles descriptor. Bounding box of a walking human (left),
Cover by Rectangles descriptor (right). A gray level on pixel displays the density of
rectangles that contains that pixel.
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Fig. 7. Recognition rate obtained with the application of the appearance
based algorithm proposed in [8]. Since we have aligned the reconstructed volumes
along the gait sequence, we can use a frontal projection of them. We show the effect
on the classification rate of using a sliding temporal window for voting.

that no information is ever lost. A representation of this descriptor can be seen
in Fig. 6.

As we have aligned gait volumes, we can use front-rendered projections of
the aligned volumes to compute the CR, and therefore the method proposed in
[8] can be tested in a view invariant way.

To test the algorithm with the AVA Multi-view Dataset, we use a leave-
one-out cross-validation. Each fold is composed by a tuple formed by a set
of 20 sequences (one sequence per actor) for testing, and by the remaining
eight sequences of each actor for training, i.e. 160 sequences for training and 20
sequences for test. We use SVM with Radial Basis Functions, since we obtained
better results than with others classifiers. To make the choice of SVM parameters
independent of the sequence test data, we cross-validate the SVM parameters on
the training set. For this experiment, the features vector size was set to L = 20,
and the histogram size with which the highest classification rate is achieved is
M = N = 25 (see [8]). With the CR descriptor applied on the frontal volume
projection, we obtain a maximum accuracy of 84.52%, as can be seen in Fig. 7.

5 Conclusions

In this paper, we present a new multi-view database containing gait sequences
of 20 actors that depict ten different trajectories each. The database has been
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specifically designed to test multi-view and 3D based gait recognition algorithms.
The dataset contains videos of 20 walking persons (men and women) with a large
variety of body size, who walk along straight and curved paths. The cameras have
been calibrated and both calibration information and binary silhouettes are also
provided.

To validate our database, we have carried out some experiments. We began
with the 3D reconstruction of volumes of walking people. Then, we aligned and
centred them respect to a global reference system. After this, since we have
reconstructed and aligned gait sequences, we used rendered projections of these
volumes to test some appearance-based algorithms that work with silhouettes
to identify an individual by his manner of walking.

This dataset can be applied in workspaces where subjects cannot show the
face or use the fingerprint, and even they have to wear special clothing, e.g. a
laboratory. The dataset is free only for research purposes1.
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Chapter 4

3D Reconstruction and Gait
Alignment

This dissertation proposes some model-free approaches to recognize walk-
ing humans independently of the viewpoint and regardless direction changes.
These approaches focus on capturing 3D morphological, structural and dy-
namical information of the gait from volumetric reconstructions of walking
humans.

This chapter start by describing the computational process involved in
the generation of a 3D human reconstruction, from silhouettes extracted from
several viewpoints. This procedure requires calibration parameters, such as
the camera matrix, distortion coefficients (intrinsic parameters), pose and
orientation (extrinsic parameters) of each camera. This point is covered in
detail in Section 4.1.

After the 3D reconstruction, the individual is detected and the 3D
volumes corresponding to a gait sequence are aligned and centered with re-
spect to a global reference system, in order to achieve the independence with
respect to the trajectory of motion. This point is described in Section 4.2.

4.1 3D reconstruction

Shape-from-Silhouette (SfS) is a well-known approach to reconstruct the 3D
structure of objects using a set of silhouettes obtained from different views.
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Baumgart [102] was the first to introduce concepts about the 3D geometric
modelling, but it was not until 1991 that Laurentini [56] defined the concept
of the Visual Hull (VH) as the closest 3D solid equivalent to the real object
that explains the silhouettes extracted. The VH is the geometric intersection
of all visual cones explaining the projection of a silhouette in its correspond-
ing camera image. Consequently, as the number of views increases, so does
the precision of the reconstructed object [103].

Figure 4.1: Example of reconstructed gait sequence, sampled at 2Hz, where
each cube represents a voxel.

Since this work propose methods that generate gait descriptors from
3D occupation volumes or VH, it is important to first explain the basic
concepts of a standard SfS method.

It is assumed a three-dimensional work area that is divided into cubes
of the same volume called voxels. The voxel set is denoted by V = {vi =
{x, y, z}|i = 1, . . . , n}, where n represents the total number of voxels and
vi = {x, y, z} the center of the i-th voxel.

Let us also assume that there is a set of cameras placed at known
locations (extracted using calibration) and that we have a background sub-
traction method that obtains the silhouettes of the foreground objects. We

48



Chapter 4. 3D Reconstruction and Gait Alignment

denote these foreground images as F = {Fc|c = 1, . . . , C}, where C is the
number of cameras. A pixel (x, y) ∈ Fc is true if it is classified as belonging
to the foreground and false otherwise.

SfS methods examine voxel projections in the foreground images in
order to determine whether they belong to the shape of objects. This is
achieved by means of a projection test. Each voxel is projected in all the
foreground images and if its projection lays completely into a silhouette in
all the foreground images, then it is considered occupied. However, if the
voxel projects in a background region in any of the images it is considered
unoccupied. Finally, if the voxel projects partially in a foreground region it
is considered to belong to a border and a decision must be made.

Projection tests play an essential role in SfS algorithms. The most
simple one consist in projecting only the center of the voxel. More complex
approaches consist in testing either all the pixels or a subset of pixels within
the polygon formed by the voxel projection. Either way, the result is a
boolean decision indicating whether the voxel is occupied or not.

An overview of the SfS algorithm is shown in Algorithm 1. At the
first, all voxels are assumed to be occupied. Then, voxels projections are
examined in all the images using the projection test. If the projection test
indicates that the voxel does not belong to the silhouette of any foreground
image, the it is considered as not occupied independently of its projection
on the rest of images. The result of the algorithm is the set of VHs of the
objects in the scene.

Algorithm 1 Classical SfS algorithm.

Require:
Foreground images. F : {Fc}
Projection Test Function. PT (vi,Fc)

1: for all vi ∈ V do
2: vi ← occupied
3: for all Fc ∈ F do
4: if PT (vi,Fc) is false then
5: vi ← ¬ocuppied
6: examine next voxel
7: end if
8: end for
9: end for
10: return VH
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We assume that we may have inconsistent silhouettes, due to poor
segmentation results. It could cause false positive and false negative errors
in the reconstruction stage. To face this inconvenient, the SfS algorithm
proposed by [104] could be used. Fig. 4.1 shows a 3D reconstructed gait
sequence.

To minimize the computational time, SfS could take advantage of the
power of Graphics Processing Units (GPU), as it was proved in [105] and
[106].

4.2 Volume detection and alignment

Given a reconstructed volume Vt of a person at each instant t along the
way, it is required a mechanism of detection and gait alignment to achieve
the independence which refers to the trajectory. This process will allow
the individual to walk freely in the scene, without adversely affect to the
subsequent generation of gait descriptors.

We assume that although there is only one individual in the scene,
reconstructed shadows as well as noise can coexist, due to poor segmentation.
By obtaining the ground marginal distribution of occupied voxels (ground
projection of the volume), we detect the volume belonging to a person as
that which has a greater volume than a certain threshold φ, and its volume
has fully entered into the workspace. The value of φ is tuned up accordingly
to the average corporal volume for humans and the resolution of the 3D
reconstructions.

We consider that a voxel size of 0.27 × 10−4m3 is enough to get de-
tailed 3D human reconstructions. The average corporal volume for humans
is 66.4L = 0.6640× 10−1m3 measured by the water displacement method in
521 people aged 17− 51 years [107]. Using a voxel size of 0.27× 10−4m3, the
number of voxels belonging to a person in the 3D volume should be about
2459. With a value of 1 × 103 < φ < 2459 the system should be able to
detect an adult human.

When the volume belonging to a person has been detected, the cen-
troid p of the ground projection is calculated. Then, the volume is moved
into a bounding-box of average adult human’s size, so that the workspace
where the descriptor will be computed is bounded. This process is illus-
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Figure 4.2: Bounding-box with size of an average adult human, where the
descriptor will be computed on the 3D reconstructed data at time t.

trated in Fig. 4.2. The estimation of the direction of path is determined by
the displacement vector, defined as

~vt = pt − pt−1, (4.1)

where t is the current time, pt is the centroid’s current position, and pt−1 is
the last known position of the centroid.

The angle of the displacement vector is calculated using the expression

αt = arctan
vty
vtx
. (4.2)

An example of extraction of the displacement vector angle can be seen
in Fig. 4.3, where top projections of the individual can be seen in several
moments of the gait, and the principal axis (perpendicular to displacement
vector) is represented. The reconstructed volume is rotated about the body
vertical axis using the angle αt.

Although we assume a constant walking speed, an individual could
vary moderately the walking speed in a certain moment of the gait. It could
happen, for example, when the individual is describing a curved closed path.

If the walking speed is very low at time t, |~vt| will be too small, which
could result in a noisy estimation of the angle αt. To attenuate this noise
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Figure 4.3: The displacement vector (red line) of the individual is computed
at each time. The principal axis (blue line) is perpendicular to the displace-
ment vector.

in the αt estimation and smooth the path, we propose a weighted average of
the displacement vector angle as follows

ᾱt = αt · β + ᾱt−1 · (1− β), (4.3)

where

β =
||~vt||

maxi=0..t {||~vi||}
. (4.4)

The aim of β is to reduce this noise in the estimation of the alignment
angle, giving more or less weight to the current estimation depending on
the walking speed. For example, if the walking speed is decreasing and it
becomes too small, the magnitude of the displacement vector may not be
large enough, causing oscillations in the estimation of the angle. In this case,
it would be right to give less importance to the current angle estimation.
However, if the walking speed is increasing, it would be more appropriate to
give more weight to the current angle estimation. A method to decrease over
time the denominator in Eq. (4.4) should be applied if the gait sequence
were too large. Thus, the whole gait sequence can be centered and aligned
along the path as it is illustrated in Fig. 4.4. In the following, the aligned
volume is denoted by V ∗.
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Figure 4.4: Union of all aligned 3D volumes over the gait sequence. Different
colors represent the distance to the center on the X axis.
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Chapter 5

Morphological Descriptions of
3D Human Reconstructions

In this chapter we present a model-free approach to recognize walking humans
independently of the viewpoint and regardless direction changes. This new
approach focuses on capturing 3D morphological and structural information
from the gait through volumetric reconstructions of the walking human [108].
The use of volumetric information allows more information to be analysed
in contrast to other related works, which only compute gait descriptors from
silhouettes, discarding an important part of the dynamical and structural
information of the gait. This method extends the input domain for the
morphological gait descriptors presented in [34], from 2D silhouettes to 3D
reconstructions of the individuals, aligned along the way.

Our method relies on morphological analysis of series of 3D occupa-
tion volumes which are generated from multi-view video sequences. For each
time of the gait sequence, a 3D occupation volume is generated by combin-
ing information from multiple silhouette images, from several points of view.
Then, this gait volume is aligned and centered with respect to a global refer-
ence system. Next, our gait descriptor is computed on each 3D gait volume
in order to provide information about their 3D appearance.

Two new gait descriptors are presented. The first is based on com-
puting Cover by Rectangles C(S) descriptors (see Section 2.3) on the front,
side, and top projections of the aligned volume V ∗. The second is the Cover
by Cubes, which is defined as the union of all the cubes with the largest size
that can fit into a volume belonging to a person.
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A B S T R A C T

Many studies have confirmed gait as a robust biometric feature for identification of individuals. However,
direction changes cause difficulties for most of the gait recognition systems, due to appearance changes. This
study presents an efficient multi-view gait recognition method that allows curved trajectories on uncon-
strained paths in indoor environments. The recognition is based on volumetric analysis of the human gait,
to exploit most of the 3D information enclosed in it. Appearance-based gait descriptors are extracted from
3D gait volumes and temporal patterns of them are classified using a Support Vector Machine with a slid-
ing temporal window for majority voting. The proposed approach is experimentally validated on the “AVA
Multi-View Dataset (AVAMVG)” and on the “Kyushu University 4D Gait Database (KY4D)”. The results show
that this new approach is able to identify people walking on curved paths.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Research on human gait as a biometric feature for identification
has received a lot of attention due to the apparent advantage that it
can be applied discreetly on the observed individual without needing
the active participation of the individual.

Previous studies on gait recognition have been classified into two
categories: model-based and model-free approaches. The model-
based methods extract gait features by fitting a model to input
images, whereas model-free approaches characterize the human gait
pattern by a compact representation, without having to develop any
articulated model for feature extraction and having practical appli-
cation even with low quality images where the color and texture
information is lost.
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In addition, regarding viewing angle, the previous work can
be categorized into two approaches: view-dependent and view-
independent approaches. The view-dependent approaches assume
that the appearance will not change during walking. In such meth-
ods, a change in the appearance, caused by a view change, will
adversely affect performance [1]. Fig. 1 shows the influence of a
curved path on the silhouette appearance. As one of the advan-
tages of gait as biometric is that it does not need the cooperation of
the individual, the trajectory of motion cannot be restricted to just
straight paths.

On the other hand, the use of volumetric information allows
more information to be analyzed in contrast to methods which only
compute gait descriptors from silhouettes or 2D images. This paper
presents an efficient view-independent method to recognize peo-
ple walking along unconstrained (curved and straight) trajectories.
This approach focuses on capturing 3D morphological and structural
information from volumetric reconstructions of walking humans,
which are previously aligned along the way. The main contribu-
tion is that our method allows direction changes, achieving a good
recognition rate on unconstrained paths.

Some potential applications of this work are access control in spe-
cial or restricted areas (e.g. military bases, governmental facilities
and laboratories) or smart video surveillance (e.g. bank offices) [2].

This article is organized as follows. Section 2 describes works
related to the topic of gait recognition. Section 3 explains the details

http://dx.doi.org/10.1016/j.imavis.2016.01.003
0262-8856/© 2016 Elsevier B.V. All rights reserved.
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Fig. 1. In a curved path, the observation angle between the walking direction of
the subject and optical axis of the camera is gradually changed, which affects the
silhouette appearance.

of the proposed algorithm and describes three new descriptors
which obtain information from 3D occupancy volumes. An analysis
of the proposed method and the performance is given in Section 4.
Finally, we conclude this paper in Section 5.

2. Related work

The previous work can be categorized into two approaches: view-
dependent and view-independent approaches. In the following we
describe works related to both categories.

2.1. View-dependent approaches

One of the earliest model-free and view-dependent approaches
can be seen in [3], where the width of the outer contour of the bina-
rized silhouette from a side view is used to build a descriptor which
contains both structural features and dynamic aspects of gait. Fea-
ture vectors derived from binary silhouettes have been also used to
train Hidden Markov Models [4]. The contours of silhouettes have
been used directly [5,6], and through their Fourier descriptors [7,8].

In addition, the authors of Ref. [9] present a gait recognition
method which analyzes the shape of the silhouette using Procrustes
Shape Analysis and Elliptic Fourier Descriptors. The Gait Energy
Image (GEI) descriptor is introduced in [10], which is the average of
all silhouette images for a single gait cycle. Silhouette images are also
used by Lam et al. [11] to generate the gait flow image (GFI).

Based on the idea of GEI, Depth Energy Image (DEI) was defined
in [12], which is simply the average of the depth silhouettes taken
along a gait cycle, over the front view. GEI is also extended in [13]
to consider depth information from the side view, by means of a
new feature called Depth Gradient Histogram Energy Image (DGHEI).
Depth information is also used by Chattopadhyay et al. [14] to
address the problem of occlusion in frontal gait recognition.

The Gait Energy Volume (GEV), a binary voxel-discretized vol-
ume which is spatially aligned and averaged over a gait cycle, is
presented in [15]. The authors apply GEV on partial reconstructions

obtained with depth sensors from the front view of the individual.
An extended work from GEV [15] that combines the frontal-view
depth gait image and side-view 2D gait silhouette by means of a
back-filling technique is presented in [16]. A spatio-temporal repre-
sentation based on point clouds in a spherical coordinate space was
proposed in [17], where frontal 3D point clouds of humans obtained
with stereo cameras are used.

A work closely related to our proposed approach in terms of anal-
ysis by morphological size distributions was proposed in [18]. In
this work, video cameras are placed in hallways to capture longer
sequences from the front view of walkers rather than the side view,
which results in more gait cycles per gait sequence. Despite the high
recognition rate, the main drawback of this model-free approach is
the dependence with respect to the viewpoint. To obtain a gait rep-
resentation directly from silhouettes, the authors proposed the use
of a morphological descriptor, called Cover by Rectangles, which is
defined as the union of all the largest rectangles that can fit inside a
silhouette.

In [19], a 3D approximation of a Visual Hull (VH) [20] is used to
design a multi-modal recognition approach. Although a VH model is
computed, a gait recognition scheme based on silhouette analysis is
applied, which restricts a large amount of discriminant information
because the recognition is based on single view silhouette analysis,
instead of analyze 3D information. Seely et al. [21] use 3D volumet-
ric data to synthesize silhouettes from a fixed viewpoint relative
to the subject. The resulting silhouettes are then passed to a stan-
dard 2D gait analysis technique, such as the average silhouette. The
sequences are collected from a multi-biometric tunnel, where the
subjects just walk straight.

Ariyanto and Nixon [22] propose a model-fitting algorithm, cor-
relation filters and dynamic programming to extract gait kinematics
features. They use a structural model including articulated cylinders
with 3D Degrees of Freedom (DoF) which are fitted to a visual hull
shape to model the human lower legs. In [23], 3D data collected
from a projector–camera system is used to fit 3D body models and
reconstruct synthetic poses in a gait cycle.

2.2. View-independent approaches

Appearance changes due to viewing angle changes cause diffi-
culties for most of the model-free gait recognition methods. This
situation cannot be easily avoided in practical applications. There are
three major approach categories to sort out this problem, namely:
(1) approaches that construct 3D gait information through multiple
calibrated cameras; (2) approaches that extract gait features which
are invariant to viewing angle changes; (3) approaches whose per-
formance relies on learning mapping/projection relationship of gaits
under various viewing angles [24].

Approaches of the first category are represented in [25,26]. Bodor
et al. [25] apply image-based rendering on a 3D VH model to recon-
struct gait features under a required viewing angle. This approach
tries to classify the motion of a human in a view-independent way,
but it has two drawbacks. On the one hand it considers only straight
paths to estimate the position and orientation of a virtual camera.
Tests were performed only on straight path motions. On the other
hand, not all the 3D information available in the VH is used, because
feature images are extracted from 2D images rendered only from a
single view.

In [26], an observation angle at each frame of a gait sequence
is estimated from the walking direction, by fitting a 2D polynomial
curve to the foot points. Virtual images are synthesized from 3D
reconstructions, so that the observation angle of a synthesized image
is the same that the observation angle for the real image of the sub-
ject, which is identified by using affine moment invariants extracted
from images as gait features. The advantage of this method is that the
setup assumes multiple cameras for training, but only one camera for
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testing. However, as in the above two works, despite 3D volumes are
used, descriptors are extracted from 2D images, so that, the amount
of used information is restricted. On the other hand, shadows on
the floor complicate the estimation of the foot points in silhouette
images.

Approaches of the second category extract gait features which are
invariant to viewing angle change. A method to generate a canonical
view of gait from any arbitrary view is described in [27]. The main
disadvantage of this method is that the synthesis of a canonical view
is only feasible from a limited number of initial views. The perfor-
mance is significantly dropped down when the angle between image
plane and sagittal plane is large.

In [28], a method based on homography to compute view-
normalized trajectories of body parts obtained from monocular video
sequences was proposed. But this method only works properly for
a limited range of views. Planar homography has also been used
to reduce the dependency between the motion direction and the
camera optical axis [29], however this method seems not to be
applicable when the person is walking nearly parallel to the opti-
cal axis. In [30] view-invariant features are extracted from GEI. Only
parts of gait sequences that overlap between views are selected for
gait matching, but this approach cannot cope with large view angle
changes under which gait sequences of different views can have little
overlap.

A self-calibrating view-independent gait recognition based on
model-based gait features is proposed in [31]. The poses of the lower
limbs are estimated based on markerless motion estimation. Then,
they are reconstructed in the sagittal plane using viewpoint rectifi-
cation. This method has two main drawbacks that are worth men-
tioning: 1) the estimation of the poses of the limbs is not robust from
markerless motion; 2) it is not applicable for frontal view because the
poses of the limbs become untraceable; and 3) this method assume
that subjects walk along a straight line segment.

Zhao et al. [32] present a multi-camera approach for gait track-
ing and recognition. The video sequences are used as input, and
then a human 3D model is set up. The lengths of key segments are
extracted as static parameters, and the motion trajectories of lower
limbs are used as dynamic features. A skeletal 3D model is also used
in the work of Kastaniotis et al. [33], which presents a framework
for pose-based gait recognition and identification, as well as gender
recognition.

The approaches of the third category rely on learning map-
ping/projection relationship of gaits under various viewing angles.
The trained relationship may normalize gait features from differ-
ent viewing angles into shared feature spaces. An example from
this category can be read in [34], where LDA-subspaces are learned
to extract discriminative information from gait features under each
viewing angle.

A View Transformation Model (VTM) was introduced in [35] to
transform gait features from different views into the same view. The
method of Makihara t al. [35] creates a VTM based on frequency-
domain gait features, obtained through Fourier Transformation. To
improve the performance of this method, Kusakunniran t al. [36] cre-
ated a VTM based on GEI optimized by linear discriminant analysis.
A sparse-regression-based VTM for gait recognition under various
views is also proposed in [24]. However, this method cannot deal
with changes in the direction of motion.

Although methods of the third category have better ability to
cope with large view angle changes compared to other works, some
common challenges are the following [24]: (1) performance of gait
recognition decreases as the viewing angle increases; (2) since the
methods rely on supervised learning, it will be difficult for rec-
ognizing gait under untrained/unknown viewing angles, (3) these
methods implicitly assume that people walk along straight paths and
that their walking direction does not change during a single gait cycle
(i.e., that people do not walk along curved trajectories). However,

people often walk on curved trajectories in order to turn a corner or
to avoid an obstacle.

3. Proposed method

We propose a model-free approach to recognize walking humans
independently of the viewpoint and regardless direction changes.
Our approach focuses on capturing 3D morphological and structural
information from the gait through volumetric reconstructions of the
walking humans.

The use of volumetric information allows more information to
be analyzed in contrast to other related works, which only compute
gait descriptors from silhouettes, discarding an important part of the
dynamical and structural information of the gait. So that, our method
extends the input domain for the morphological gait descriptors used
in [18], from 2D silhouettes to 3D reconstructions of the individuals,
aligned along the way.

Our approach relies on morphological analysis of series of 3D
occupation volumes which are generated from the multi-view video
sequences. For each time of the gait sequence, a 3D occupation vol-
ume is obtained by combining information from multiple silhouette
images, from several points of view. Then, this gait volume is aligned
and centered with respect to a global reference system. Next, our gait
descriptor is computed from each 3D gait volume in order to provide
information about their 3D appearance.

A gait signature is built by aggregating descriptors. The gait sig-
nature is a temporal pattern of gait, a sample that feeds a classifier
producing a class label corresponding to the identity of a particu-
lar person. The proposed recognition algorithm is shown in Fig. 2,
where the identity of a walking human is predicted at each time t.
The algorithm consists of five steps which are exposed in detail in
this section:

1. Silhouette extraction of each camera’s view by a background
subtraction technique [37].

2. 3D reconstruction from silhouettes captured from several
viewpoints, by a Shape from Silhouette algorithm (SfS) [38].

3. Person detection and gait alignment.
4. Gait descriptor generation, which is used to update the gait

signature.
5. Classification of gait signature by a machine learning algorithm.

The first three steps of the algorithm generate a 3D volume with
occupancy information of the person at time t, whereas the last three
steps perform the feature extraction, signature generation and gait
classification.

3.1. 3D reconstruction, detection and alignment

We start by computing a 3D reconstruction of the individual
from silhouettes extracted from several viewpoints. This proce-
dure requires calibration parameters, such as the camera matrix,
distortion coefficients (intrinsic parameters), pose and orientation
(extrinsic parameters) of each camera.

After the 3D reconstruction, the individual is detected and the 3D
volumes corresponding to a gait sequence are aligned and centered
with respect to a global reference system, so that the generation
of the descriptors can be made as if the person had walked on a
treadmill in a certain direction.

3.1.1. 3D reconstruction
Since our method generates gait descriptors from 3D occupation

volumes or VH, a 3D reconstruction procedure, such a Shape from
Silhouette algorithm [38] is required. Fig. 3 shows a 3D reconstructed
gait sequence.
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Fig. 2. Steps of our gait-recognition algorithm at time t.

3.1.2. Volume detection and alignment
Given a reconstructed volume Vt of a person at each instant t

along the way, it required a mechanism of detection and alignment
to achieve the independence which refers to the viewpoint. This pro-
cess will allow the individual to walk freely in the scene, without
adversely affecting the subsequent generation of gait descriptors.

We assume that although there is only one individual in the
scene, reconstructed shadows as well as noise can coexist, due to
poor segmentation. By obtaining the ground marginal distribution

Fig. 3. Example of reconstructed gait sequence, sampled at 2Hz, where each cube
represents a voxel.

of occupied voxels (ground projection of the volume), we detect
the volume belonging to a person as that which has a greater vol-
ume than a certain threshold 0, and its volume has fully entered
into the workspace. The value of 0 is tuned up accordingly to the
average corporal volume for humans and the resolution of the 3D
reconstructions. This is described in Section 4.2.

When the volume belonging to a person has been detected, the
centroid p of the ground projection is calculated. Then, the volume
is moved into a bounding-box of average adult human’s size, so that
the workspace where the descriptor will be computed is bounded.
This process is illustrated in Fig. 4. The estimation of the direction of
path is determined by the displacement vector, defined as:

�vt = pt − pt−1, (1)

where t is the current time, pt is the centroid’s current position, and
pt−1 is the last known position of the centroid.

The angle of the displacement vector is calculated using the
expression:

at = arctan
vty

vtx

. (2)

An example of extraction of the displacement vector angle can be
seen in Fig. 5, where top projections of the individual can be seen
in several moments of the gait, and the principal axis (perpendicular
to displacement vector) is represented. The reconstructed volume is
rotated about the body vertical axis.

Although we assume a constant walking speed, an individual
could vary moderately the walking speed in a certain moment of the
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Fig. 4. Bounding-box with size of an average adult human, where the descriptor will be computed on the 3D reconstructed data at time t.

gait. It could happen, for example, when the individual is describing
a curved closed path.

If the walking speed is very low at time t,
∣∣�vt

∣∣ will be too small,
which could result in a noisy estimation of the angle at. To attenuate
this noise in the at estimation and smooth the path, we propose a
weighted average of the displacement vector angle as follows:

āt = at • b + āt−1 • (1 − b), (3)

where

b =

∣∣∣∣�vt
∣∣∣∣

maxi=0...t
{∣∣∣∣�vi

∣∣∣∣} . (4)

The aim of b is to reduce this noise in the estimation of the align-
ment angle, giving more or less weight to the current estimation

depending on the walking speed. For example, if the walking speed
is decreasing and it becomes too small, the magnitude of the dis-
placement vector may not be large enough, causing oscillations in
the estimation of the angle. In this case, it would be right to give less
importance to the current angle estimation. However, if the walk-
ing speed is increasing, it would be more appropriate to give more
weight to the current angle estimation. A method to decrease over
time the denominator in Eq. (4) should be applied if the gait sequence
were too large. Thus, the whole gait sequence can be centered and
aligned along the path as it is illustrated in Fig. 6.

3.2. Gait identification

The algorithm steps that handle up the gait identification are
described below.

Fig. 5. Displacement vector (red line) of the individual is computed at each time. The principal axis (blue line) is perpendicular to the displacement vector.
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Fig. 6. Union of all aligned 3D volumes over the gait sequence. Different colors
represent the distance to the center on the X axis.

3.2.1. Descriptor generation
The first step is the generation of the gait descriptor on the Vt

volume. We propose the three following candidate descriptors.

• Cover by Rectangles from frontal volume projection:
The Cover by Rectangles descriptor, denoted here as CR(S), was
proposed by Barnich and Van Droogenbroeck [18]. It is defined
as the union of all the largest rectangles that can fit inside of
a silhouette S. In Barnich’s method, video cameras are placed
in hallways to capture longer sequences from the front view of
walkers rather than the side view, which results in more gait
cycles per gait sequence. The main drawback of this method is
the dependence on the viewpoint.
Each silhouette is then converted to an intra-frame histogram,
which compacts the width and height distributions of the set
of all the rectangles that can be wedged inside the silhouette.
In order to build the histogram, the widths and heights of the
rectangles are discretized into M and N bins respectively.
As the occupation volumes have been aligned to achieve the
view independence, a virtual camera can be placed in front of
the volumes to obtain projections on which the CR(S) can be
computed, as can be seen in Fig. 7 (b).

• Cover by Cubes:
We propose a new gait descriptor defined as the union of all the
cubes with the largest size that can fit into a volume belonging
to the person. It is called Cover by Cubes.
Considering V as the 3D volume of a person in a moment of
the gait, CC(V) is the union of all cubes of maximum size that
can fit in it. The new descriptor deals with three-dimensional
domain spatial information, and like Cover by Rectangles, it has
the following useful properties:

– The elements of the set overlap each other, introducing
redundancy (i.e. robustness).

– Each element (cube) of CC(V) covers at least one voxel that
belongs to no other cube.

– The union of all cubes reconstructs the volume V so that no
information is ever lost.

Let a = #CC(V) be the cardinality of the set CC(V). The
cubes of CC(V) are indexed with a parameter e, so that Ce(e =
1, . . . ,a) are the cubes of CC(V). The width, height and depth
of Ce are, respectively, denoted by we, he and de; and they
are upper-bounded by wmax, hmax and dmax, so ∀e, we ≤ wmax,
he ≤ hmax and de ≤ dmax.

In order to build histograms, the widths, heights and depths
of the cubes Re are discretized into M bins BW(i), N bins BH( j)
and D bins BD(k)

BW (i) =
[

i
wmax

M
, (i + 1)

wmax

M

)
, (5)

BH( j) =
[

j
hmax

N
, ( j + 1)

hmax

N

)
, (6)

BD(k) =
[

k
dmax

D
, (k + 1)

dmax

D

)
(7)

where i = 0, . . . , M − 1; j = 0, . . . , N − 1 and k = 0, . . . , D − 1.
Three histograms are defined, HW(i), HH( j) and HD(k):

HW (i) =
1
a

#
{
Ce|we ∈ BW (i)

}
, (8)

HH( j) =
1
a

#
{
Ce|he ∈ BH( j)

}
, (9)

HD(k) =
1
a

#
{
Ce|de ∈ BD(k)

}
, (10)

and the three-dimensional histogram HW×H×D as:

HW×H×D(i, j, k) =
1
a

#
{
Ce|we ∈ BW (i), he ∈ BH( j), de ∈ BD(k)

}
.

(11)

All these histograms are normalized taking into account the
number of cubes of maximum size of the volume.

From the four histograms, HW(i), HH( j), HD(k) and
HW×H×D(i, j, k), the latter is the one that better describes V.
However, its dimensionality is proportional to the product of
the numbers of bins (M × N × D), which might be too high, e.g.,
for embedded systems. To deal with such situation, a compos-
ite histogram is proposed, HW+H+D(l), with l = 0, . . . , M + N +
D − 1 defined as the concatenation of HW(i), HH( j) and HD(k)
(marginal distributions).

An example of Cover by Cubes histograms is shown in Fig. 8.
In this figure, the joint distribution and the marginal distribu-
tions of the histograms can be seen, corresponding to Eqs. (11),
(8), (9), and (10).

• Cover by Rectangles from top, side, and frontal volume
projections:
The availability of 3D gait volumes leads us to that think we
can use several projections of the gait volumes, instead of just
using the frontal projection of them, in order to exploit the 3D
information of gait.
So following the idea about the use of virtual cameras, we also
propose a new descriptor based on computing the CR descrip-
tor on the front, side, and top projections of the volume V, as it
is shown in Fig. 7. Its concatenation can be denoted as CRP(V).
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Fig. 7. Cover by Rectangles descriptors computed on the front (b), side (c), and top (d) view projections of a 3D volume reconstruction (a). A gray level of pixel in images (b) and
(d) displays the density of rectangles that contain that pixel.

CRP (V) = CR(side), CR( front), CR(top), (12)

where side, front and top are lateral, frontal and top rendered
projections of V, respectively.

3.2.2. Gait signature update
The action immediately prior to the classification by a machine

learning algorithm is the generation of the sample or vector of
features. A sample is generated at every moment of the walking,
which enables synchronous classification. This is known as G or gait
signature, and represents a temporal pattern of movement of the
person.

For the CR descriptor, obtained on the front projection of the
volume, the signature G can be obtained by combining a number L
of successive histograms into a single spatio-temporal (inter-frame)
gait signature, as it was described in [18]. The signature can be
made by the combination of the marginal or joint distribution of the
histograms and it needs to be updated in every time t.

However, with the new proposed gait descriptors (CC and CRP)
which get information from 3D occupancy volumes instead of getting

it from silhouettes, it is necessary to reformulate the procedure to
construct the signature G . The way in which this signature is built
depends on the descriptor.

With regard to CC descriptor, the gait signature G relies on tempo-
ral series of descriptors obtained from the 3D volumes of a person’s
gait sequence. So if t refers to the current time, and H(i, j, k, t) is the
Cover by Cubes descriptor obtained from the volume Vt, we have two
possible signatures as follows:

G W×H×D(i, j, k, t) = HW×H×D(i, j, k, t−(L−1)), . . . , HW×H×D(i, j, k, t) (13)

which consist of n-uples of L consecutive histograms, and a short-
ened version as:

G W+H+D(o, t) = HW+H+D(o, t − (L − 1)), . . . , HW+H+D(o, t) (14)

where o = 0, . . . , M + N + D − 1.
Similarly, for CRP descriptors, the gait signature G can be also

composed by aggregating, on a sliding window, L CRP descrip-
tors (joint or marginal distribution of the histograms computed on
rendered side, top and front projections of V).

Fig. 8. Cover by Cubes histograms, where n refers to the length of the gait sequence. M × N × D is the number of bins of the histogram HW×H×D , and the blue rectangles represent
marginal distributions.
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3.2.3. Classification
The gait signature obtained at time t is the feature vector used for

recognition. Each of these feature vectors is assigned to a class label
that corresponds to one of the individuals in the database. This idea is
well known as multi-class classification system. We adopt a Support
Vector Machine (SVM) [39] for training and classification.

Our recognition algorithm provides the identity of the person as
soon as possible, without having to split the gait sequence into gait
cycles. This makes our method less restrictive compared to other
techniques from the literature. A possibly different class label can
be produced for each new gait signature, on the basis of L previous
volumes.

To smooth and reinforce the results over time, a majority vote
policy over a sliding temporal window of size W is used. As the gait
signature information is computed on L previous volumes, the use of
this window causes a delay of L + W frames in obtaining the iden-
tity. Fig. 9 shows an example of majority voting system over a sliding
temporal window, with L = 5 and W = 3.

4. Experiments and discussion

In this section we start by describing the used datasets, and then
we present the experimental results.

4.1. Datasets description

To perform a 3D reconstruction by the SfS algorithm, the dataset
must be multiview and calibration information have to be provided.
Two datasets have been used to carry out the experiments, the “AVA
Multi-View Dataset for Gait Recognition (AVAMVG)”2 [40] and the
“Kyushu University 4D Gait Database (KY4D)”3 [26].

In AVAMVG, 20 subjects perform 9 walking trajectories in an
indoor environment. Each trajectory is recorded by 6 color cameras
placed around a room that is crossed by the subjects during the
performance, according to the distribution shown in the diagram of
Fig. 10.

The video sequences of AVAMVG have a resolution of 640 × 480
pixels, and were recorded at a rate of 25 frames per second. For
each actor, 9 gait sequences are captured in several trajectories as
described in the figure by {t1, . . . , t9}. Of these trajectories, 3 are
straight ({t1, . . . , t3}) and 6 are curved ({t4, . . . , t9}). An example of
this dataset is shown in Fig. 11, in which several subjects are walking
along different paths, from multiple viewpoints. Calibration param-
eters for the cameras of AVAMVG have been obtained with Aruco
library [41].

With respect to KY4D Gait Database, it is composed of sequen-
tial 3D reconstructions and image sequences of 42 subjects walking
along four straight and two curved trajectories. The sequences were
recorded by 16 cameras, at a resolution of 1032 × 776 pixels.
Although the KY4D Gait Database also provide sequential 3D recon-
structions of subjects, we have reconstructed them with the same SfS
method and resolution parameters used for reconstructing the 3D
AVAMVG models.

As far as we know, there are other well-known multi-camera
databases, as CMU Motion of Body (MoBo) Database [42] and CASIA
Dataset B [43]. However, since these databases do not include infor-
mation on camera parameters, 3D reconstructions of walking people
cannot be obtained. Therefore, we did not use these databases in the
experiments of the present study.

2 Publicly available at: http://www.uco.es/investiga/grupos/ava/node/41 .
3 Publicly available at: http://robotics.ait.kyushu-u.ac.jp/research-e.php?content=

db.

Fig. 9. Majority vote policy over a sliding temporal window. In this example, the size
of the signature is set to L = 5, and the size of the voting window is set to W = 3.

4.2. Experimental results

In this section, we present the results of multiple experiments run
on both gait datasets. First of all, we need to determine the value of
several parameters of our method. Thus, considering the 3D recon-
struction stage, the first relevant parameter is the voxel size. We
consider that a voxel size of 0.27 × 10−4m3 is enough to get detailed
3D human reconstructions.

The average corporal volume for humans is 66.4L = 0.6640 ×
10−1m3 measured by the water displacement method in 521 people
aged 17 − 51 years [44]. Using a voxel size of 0.27 × 10−4m3, the
number of voxels belonging to a person in the 3D volume should be

Fig. 10. Workspace setup used by AVAMVG Dataset, where {c1, . . . , c6} represent
the set of cameras of the multiview dataset and {t1, . . . , t9} represent the different
trajectories followed by each actor of the dataset.
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Fig. 11. Example of AVAMVG multiview dataset. People walking in different directions, from multiple points of view.

about 2459. With a value of 1 × 103 < 0 < 2459 (see Section 3.1.2)
the system should be able to detect an adult human.

Regarding the volume alignment, Table 1 shows the mean error
in the estimation angle for each trajectory of the KY4D dataset. We
also report the 95% confidence interval on the mean, assuming that
the data are normally distributed.

As it was proved in [18], the number of silhouettes (volumes in
our case) aggregated in a single gait signature can be set in L = 20,
because we have a rate of 25 volumes per second, and L = 20
responds to a signature of about 1 s which matches the length of a
gait cycle.

The decision to build the gait signatures with joint or marginal
distributions of histograms depends on the amount of training data
and memory available for the classification process. If all the other
parameters are kept unchanged, the use of joint distributions should
lead to get better results. However, the dimensionality of the cor-

responding feature space using joint distributions is M × N × L for
CR [18], M × N × 3 × L for CRP, or M × N × D × L for CC, which is too
expensive to compute. Alternatively, the dimensionality of the fea-
ture space using marginal distributions of histograms is (M+N)×L for
CR, (M+N)×3×L for CRP and (M+N+D)×L for CC. For example, for
a value of M = N = D = 25 and L = 20, the feature space of the CC
descriptor has a dimensionality of 312500 using joint distributions,
compared to 1500 features using marginal distributions.

In several previous experiments, we noted that if we use joint dis-
tributions and SVM, the accuracy is lower than if we use marginal
distributions. Maybe it can occur because the statistical significance
of the joint distribution of histograms is much lower than the sta-
tistical significance of the marginal distributions of them. Moreover,
may be impracticable to compute the joint distribution of histograms
such as CC or CRP because of the high dimensionality. Therefore, we
focus our experimentation on the use of marginal distributions of the
histograms.

In order to determine M, N and D (the number of bins), we tested
values ranging from 5 to 25, with step 5 on both AVAMVG and KY4D

Table 1
Mean error in the angle estimation (degrees) of the volume alignment step, for each
trajectory of KY4D dataset. The 95% confidence interval on the mean is also shown.

Straight paths Curved paths

Tr. 1 Tr. 2 Tr. 3 Tr. 4 Tr. 5 Tr. 6

0.73 ± 0.04 0.76 ± 0.06 0.74 ± 0.05 0.76 ± 0.04 2.16 ± 0.34 2.15 ± 0.30

gait databases. It was observed that large values of M, N or D gener-
ally lead to better performance. However, the performance saturates
with 20 bins and above, depending on the descriptor.
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Fig. 12. Performance of each descriptor for different histogram sizes on AVAMVG gait
database. The sliding temporal window for majority voting policy is disabled (W = 1).
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Fig. 13. Performance of each descriptor for different histogram sizes on KY4D gait
database. The sliding temporal window for majority voting policy is disabled (W = 1).
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Fig. 14. Performance of each descriptor on AVAMVG database for different lengths for
the majority voting window.

40

50

60

70

80

90

100

15 35 55 75 95 115 135

C
or

re
ct

ly
cl

as
si

fie
d

ra
te

%

Size of the sliding temporal window for majority vote (W)

CC ( M = N = D =10)

CR ( M = N =20)

CRP ( M = N =25)

Fig. 15. Performance of each descriptor on KY4D database for different lengths for the
majority voting window.

Depending on the size of the training dataset and the resolution
of the 3D reconstructed volumes, the statistical significance of all the
bins of the histograms needs to be taken into account. The first series
of experiments consisted in determining the appropriate number of
bins for each descriptor. For the sake of simplicity, we restricted to
the case where M=N or M=N=D, and disabled the majority vote on
the previous W frames (or equivalently set W to 1).

We use a leave-one-out cross-validation strategy. Regarding
experiments on the AVAMVG dataset, each fold is composed by a
tuple formed by a set of 20 sequences (one sequence per actor) for

Table 3
Correct classification rate on KY4D. These results correspond to a cross-validation
experiment. Each column corresponds to a test trajectory, using the remaining trajec-
tories as training set. Each row corresponds to a different method. Each entry contains
the percentage of correct recognition for each tuple trajectory-setup.

Method Tr. 1 Tr. 2 Tr. 3 Tr. 4 Tr. 5 Tr. 6 Mean

CRP(M = N = 25,
W = 135)

92.6% 100% 100% 97.5% 84.9% 87.8% 93.8%

CC(M = N = D = 10,
W = 135)

97.5% 97.5% 95.1% 97.5% 82.9% 90% 93.4%

Seely et al. [21] 95.1% 100% 97.5% 100% 68.2% 72.5% 88.8%
Ariyanto and

Nixon [22]
41.4% 41.4% 43.9% 53.6% 19.5% 17.5% 36.2%

testing, and by the remaining eight sequences of each actor for train-
ing, i.e. 8 × 20 sequences for training and 20 sequences for test. For
the KY4D gait dataset, each fold is composed by 42 sequences for
testing (one sequence per actor) and by the remaining five sequences
of each actor (i.e. 42 × 5 sequences) for training.

We use a C-SVC SVM, which allows imperfect separation of
classes with penalty multiplier C for outliers. Several SVM kernels
were tested, and finally we selected Radial Basis Function since we
obtained better results than with linear, polynomial, or sigmoid ker-
nels. We set the same weight to all classes. To make the choice of
SVM parameters independent of the sequence test data, we cross-
validate the SVM parameters on the training set. We report the
improvement with respect to different kernels in Table 4.

Fig. 12, shows the performance of each descriptor with L =
20 and different histogram sizes on the AVAMVG dataset. We use
marginal distributions of histogram and we get the best results with
M = N = 25 for the CR descriptor, M = N = 20 for the CRP
descriptor, and M = N = D = 15 for the CC descriptor.

On the other hand, Fig. 13 shows the performance of each descrip-
tor with different histogram sizes, applied on the KY4D gait dataset.
We use marginal distributions, and in this case, we get the best
results with M = N = 20 for the CR descriptor, M = N = 25 for
the CRP descriptor, and M = N = D = 10 for the CC descriptor. In
this experiment, for the sake of simplicity, we disabled the sliding
temporal window for majority vote.

The second series of experiments that were carried out consisted
in determining the optimum size of the sliding temporal window
for majority voting. In Figs. 14 and 15 we show how the accuracy
increases with respect to the size of the sliding temporal window for
majority voting on both datasets, using the histogram sizes selected
in the previous experiment.

The sliding temporal window of majority voting stage improves
the performance of the method with any of the three proposed
descriptors for both datasets. Nevertheless, the size of the sliding
temporal window for voting is limited by the number of available
gait signatures for each sequence.

For the AVAMVG, with CR descriptors applied on frontal volume
projections, we obtain a maximum accuracy of 90.8%. Nevertheless,
using the CC descriptor computed on the entire volume, the accuracy
is about 94.5% and finally, with the CRP descriptor, the system was
able to correctly identify up to 96.1% of subjects. On the other hand,

Table 2
Correct classification rate on AVAMVG. These results correspond to a cross-validation experiment. Each column corresponds to a test trajectory, using the remaining trajectories
as training set. Each row corresponds to a different method. Each entry contains the percentage of correct recognition for each tuple trajectory-setup.

Method Tr. 1 Tr. 2 Tr. 3 Tr. 4 Tr. 5 Tr. 6 Tr. 7 Tr. 8 Tr. 9 Mean

CRP(M = N = 20, W = 60) 100% 88% 100% 99.3% 99.2% 97.7% 96.2% 84.8% 100% 96.1%
CC(M = N = D = 15, W = 60) 100% 96% 75.5% 98.6% 87.8% 99.1% 99.5% 94% 100% 94.5%
Seely et al. [21] 90% 80% 94.7% 90% 60% 100% 80% 84.2% 90% 85.4%
Ariyanto and Nixon [22] 55% 45% 52.6% 45% 26.3% 35% 35% 31.5% 40% 40.6%
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Table 4
Correct classification rate on KY4D with respect to different kernels on KY4D dataset.

Descriptor Linear Polynomial Sigmoid RBF

CR(M = N = 20, W = 135) 78.3% 78.4% 78.0% 80.4%
CC(M = N = D = 10, W = 135) 89.3% 91.8% 92.2% 93.4%
CRP(M = N = 25, W = 135) 90.2% 91.5% 90.1% 93.8%

Table 5
Comparative of recognition results on AVAMVG dataset [40] . Each row corresponds
to a different method. The second row indicates the training trajectory. The third and
fourth columns indicate the tested trajectory. The fifth column shows the average
value of the recognition rate for the curved paths.

Method Training path Curve t4 Curve t7 Mean

CRP(M = N = 20, W = 60) Straight {t1,t2,t3} 45% 81.5% 63.2%
Seely et al. [21] Straight {t1,t2,t3} 55% 70% 62.5%
Iwashita et al. [26] Straight {t1,t2,t3} 35.1% 37.7% 36.4%
Ariyanto and Nixon [22] Straight {t1,t2,t3} 30% 30% 30%

Table 6
Comparative of recognition results on KY4D gait dataset [26] . Each row corresponds
to a different method. The second column indicates the training trajectory. The
third and fourth columns indicate the tested trajectory. The fifth column shows the
average value of the recognition rate for the curved paths.

Method Training trajectories Curve 1 Curve 2 Mean

CRP(M = N = 25, W = 135) Straight {1,2,3,4} 60.4% 81.7% 71%
Iwashita et al. [26] Straight {1,2,3,4} 61.9% 71.4% 66.6%
Seely et al. [21] Straight {1,2,3,4} 19.5% 35% 27.2%
Ariyanto and Nixon [22] Straight {1,2,3,4} 12.1% 15% 13.5%

on the KY4D dataset we obtain a maximum accuracy of 80.4% for
CR, 93.4% for CC and 93.8% for CRP descriptors.

Tables 2 and 3 show detailed results for the leave-one-out exper-
iment on AVAMVG and KY4D datasets respectively. We compare the
accuracy of our approach for CRP and CC signatures with the accu-
racy of state-of-art methods such as [21,22] on AVAMVG and KY4D
datasets. For the comparison with Ariyanto and Nixon we used the
best kinematics features proved in [22], whereas for the case of Seely
et al. [21] we have used the side-on, front-on, top-down average sil-
houettes. Since these methods are not designed to cope with curved
trajectories, we have aligned the gait volumes along the path (see
Section 3.1.2). The resolution of the reconstructed volumes was the
same for all cases.

The third series of experiments that we performed consisted in
testing our method, which allows completely free trajectories, with
the method presented in [26], for identification of people walking
along curved trajectories. Comparative of recognition results on both
datasets are shown in Tables 5 and 6. In this experiment, we used
the straight trajectories for training, and the curved trajectories for
testing.

As we can observe in Tables 4 and 5, the performance of compared
methods is dropped down when the training set does not contain
curved trajectories. Moreover, we have noticed a decrease of perfor-
mance of the method presented in [26] when it is trained with the
straight paths and tested with the curves of AVAMVG. We think it
may be due to the low number of cameras of AVAMVG and therefore
to the quality of the 3D reconstructions. Besides that, in the AVAMVG
dataset, depending on the viewpoint and performed trajectory, peo-
ple appear at diverse scales, even showing partially occluded body
parts.

We think that when the subject walks on a curved path, the gait
pattern is consequently modified, as we can see in Fig. 16. For this
reason, we consider that it is not entirely correct to train the classifier
of our model-free approach with straight paths only.

5. Conclusions

This paper has proposed a method to recognize walking humans
independently of the viewpoint and regardless direction changes.
The method focuses on capturing 3D morphological and structural
information from volumetric reconstructions of the gait. The main
contribution is that the method achieves a good recognition rate on
completely unconstrained paths, allowing direction changes, in con-
trast to others view-independent approaches where the view change
is restricted to a few angles. In our method, the individual can walk
freely in the scene without adversely affect to the recognition.

For this purpose, it was designed a mechanism of person detec-
tion and gait alignment based on 3D reconstructions. In order to
extract information from the 3D volumes, three gait morphological
descriptors are proposed. The first one is the Cover by Rectangles
(CR) [18] applied on rendered front projections of the gait volume.
The second is composed by an aggregation of three Cover by Rect-
angles descriptors computed on the top, side, and frontal projections
of the gait volume (CRP). Lastly, the third new proposed descriptor
is called Cover by Cubes (CC) and it is defined as the union of all the
cubes with the largest size that can fit into a gait volume of a person.

Fig. 16. Example of a curved gait cycle. We show several ground marginal distributions of occupied voxels. The velocity vector is represented by a red line, the blue line represents
the torso main axis, and the position of the head is represented by a green circle. We can note that in a curved trajectory, the person rotates his/her torso and leans towards the
walking direction.
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The experimental results show that the CRP descriptor is the most
reliable for using with our gait recognition method, providing good
results in both AVAMVG and KY4D gait databases. The experimental
results also show what is the optimal size for the histograms of each
descriptor on each dataset. Finally, by using a majority vote policy on
a sliding temporal window, the system is able to correctly identify up
to 96% of the subjects of the AVAMVG gait database and nearly 94%
of subjects of the KY4D dataset.
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Chapter 6

Entropy Volumes

In gait recognition, the dynamic of the information is very useful, because it
represents temporal transitions in human behaviour. We propose to extract
the dynamic of information about the relative motion on aligned 3D gait
reconstructions by measuring entropy at each voxel location.

This chapter proposes a new method to recognize people walking on
unconstrained paths, even if they walk along curved trajectories or change
direction [109]. The gait descriptors are extracted from 3D aligned human
reconstructions, so that a greater amount information is analysed in con-
trast to other related work, which compute the gait descriptors just from 2D
images, discarding a significant part of the 3D gait information.

Some entropy-based algorithms [51, 75] split the gait sequence into
gait cycles, and to do this, the sequence has to be analysed from the beginning
to the end in order to obtain the gait frequency. However, our gait recognition
algorithm is synchronous and provides the name of the person as soon as
possible without splitting the gait sequence into gait cycles nor computing
the whole gait sequence before providing a response, what makes our method
less restrictive than many other techniques described in the literature.

Besides, some of these methods use single lateral cameras. However,
by using a single lateral camera, the individual would leaves the field of view
very soon, so the length of the gait sequence is restricted. Since our 3D gait
volumes are centered with respect to a global reference system and aligned
along their way, we can get more rendered images from the volumes along a
sequence.
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Maŕın-Jiménez, and R. Muñoz-Salinas. The AVA Multi-View Dataset
for Gait Recognition. In Activity Monitoring by Multiple Dis-
tributed Sensing, Lecture Notes in Computer Science, pages 26-39.
Springer International Publishing, 2014. ISBN 978-3-319-13322-5.
doi: 10.1007/978-3-319-13323-2 3. url: http://link.springer.com/

chapter/10.1007%2F978-3-319-13323-2_3

72

http://link.springer.com/article/10.1007%2Fs00138-015-0707-9
http://link.springer.com/article/10.1007%2Fs00138-015-0707-9
http://link.springer.com/chapter/10.1007%2F978-3-319-13323-2_3
http://link.springer.com/chapter/10.1007%2F978-3-319-13323-2_3


Machine Vision and Applications (2015) 26:1079–1094
DOI 10.1007/s00138-015-0707-9

ORIGINAL PAPER

Entropy volumes for viewpoint-independent gait recognition

D. López-Fernández1 · F. J. Madrid-Cuevas1 · A. Carmona-Poyato1 ·
R. Muñoz-Salinas1 · R. Medina-Carnicer1

Received: 31 October 2014 / Revised: 13 May 2015 / Accepted: 13 July 2015 / Published online: 9 August 2015
© Springer-Verlag Berlin Heidelberg 2015

Abstract Gait as biometrics has been widely used for
human identification. However, direction changes cause dif-
ficulties for most of the gait-recognition systems, due to
appearance changes. This study presents an efficient multi-
view gait-recognition method that allows curved trajectories
on completely unconstrained paths for indoor environments.
Our method is based on volumetric reconstructions of
humans, aligned along their way. A new gait descriptor,
termed as gait entropy volume (GEnV), is also proposed.
GEnV focuses on capturing 3D dynamical information
of walking humans through the concept of entropy. Our
approach does not require the sequence to be split into gait
cycles. A GEnV-based signature is computed on the basis of
the previous 3D gait volumes. Each signature is classified
by a support vector machine, and a majority voting policy is
used to smooth and reinforce the classifications results. The
proposed approach is experimentally validated on the “AVA
Multi-View Gait Dataset (AVAMVG)” and on the “Kyushu
University 4DGait Database (KY4D)”. The results show that
this new approach achieves promising results in the problem
of gait recognition on unconstrained paths.
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View-independent · 3D reconstruction · Curved trajectories
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1 Introduction

Biometrics is the science that deals with the identification
of individuals from an anatomical and behavioural point of
view. Some of the current biometric methods use face, voice,
iris or fingerprint for human recognitiondue to its universality
and uniqueness [4].

The gait is a human feature that contains information about
the physical and psychological state of the person. What
is especially interesting is that each individual describes an
unique gait pattern, whichmeans it can be used as a biometric
indicator [10]. Gait as biometric feature for identification can
be applied discreetly without needing the active participation
of the individuals.

Previous studies on gait recognition have been clas-
sified into two categories: model-based approaches and
appearance-based approaches. The model-based methods
represent gait using the parameters of a body configuration
model which is estimated over time, whereas appearance-
based approaches characterize the human gait pattern by a
compact representation,without having to develop anymodel
for feature extraction and having practical application even
with low quality images where the colour and texture infor-
mation is lost.

In addition, regarding viewing angle, the previous work
can be categorized into two approaches: view-dependent
and view-independent approaches. The view-dependent
approaches assume that will not happen any appearance
change during walking. In such methods, a change in the
appearance, caused by a viewing angle change,will adversely
affect to the performance [41]. For example, when a sub-
ject walks along a curved trajectory, the observation angle
between the walking direction of the subject and the camera
optical axis is gradually changed at all frames in one gait
cycle. This is shown in Fig. 1.
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Fig. 1 In a curved path, the observation angle between the walking
direction of the subject and optical axis of the camera is gradually
changed, which affects the silhouette appearance

While most of appearance-based approaches are view-
dependent, the model-based approaches are generally invari-
ant to rotational effects and slight variations in the viewpoint.
However, they are characterized by complex searching and
mapping processes, which increase the computational cost.

This paper presents an efficient view-independent and
appearance-basedmethod to recognize people walking along
curved trajectories on completely unconstrained paths. We
also propose a gait descriptor which focuses on capturing
the maximum amount of dynamical gait information in a 3D
sense.

Somepotential applications of thiswork are access control
in special or restricted areas (e.g. military bases and govern-
mental facilities) or smart video surveillance where subjects
do not know they are being monitored (e.g. bank offices). It
also could be used for staff identification on laboratories or
medical isolation zones where subjects wear special clothes
that do not allow them to show the face or use the fingerprint
(e.g. protective clothing for viral diseases).

This article is organized as follows. Section 2 describes
works related to the topic of gait recognition. Section 3
explain the details of the proposed algorithm, gait descriptor
and derived signatures. An analysis of the proposed method
and the performance is given in Sect. 4. Finally, we conclude
this paper in Sect. 5.

2 Related work

2.1 View-dependent approaches

One of the earliest view-dependent approaches can be seen
in [25], where the outer contour of the binarized silhouette

from a lateral view is used to build a descriptor which con-
tains both structural features and dynamic aspects of gait. The
contours of silhouettes have also been used directly [18,40],
and through their Fourier descriptors [29,33]. In [8], hid-
den Markov models have been trained from feature vectors
derived from binary silhouettes.

In addition, in [9] it is presented a gait-recognition
method which combines spatio-temporal motion character-
istics, statistical and physical parameters of a person for its
classification. This is carried out by analysing the shape of
the silhouette using Procrustes shape analysis and elliptic
Fourier descriptors. In [15] it is proposed a gait represen-
tation called gait energy image (GEI), which key idea is to
compute the average of all silhouette images for a single gait
cycle.

Based on the idea of GEI, depth energy image [35] con-
sists in the average of frontal depth silhouettes for a gait
cycle. In [17], a new feature called depth gradient histogram
energy image is proposed to extend GEI by including depth
information.

In [37] it is presented the gait energy volume (GEV),
which is an average voxel-discretized volume. The authors
apply GEV on partial reconstructions obtained with depth
sensors from the front view of the individual. The front view
depth gait image and the side view 2D gait silhouette is com-
bined by means of a back-filling technique in [38]. The front
view depth image is also captured in [7].

A work closely related to our approach was presented in
[1], in which the gait entropy image (GEnI) is presented.
GEnI encodes in a single image, the randomness of pixel val-
ues in the silhouette images over a complete gait cycle. More
specifically, considering the intensity value of the silhouettes
at a fixed pixel location as a discrete randomvariable, entropy
measures the uncertainty associated with the random vari-
able over a complete gait cycle. Dynamic body areas which
undergo consistent relative motion during a gait cycle (e.g.
leg, arms) lead to high gait entropy values, whereas those
areas that remain static (e.g. torso) give rise to low values.

A human silhouette is extracted from the side view of the
gait sequence. After applying size normalization and hori-
zontal alignment to each silhouette image, gait cycles are
segmented by estimating the gait frequency using a maxi-
mum entropy estimation technique. GEnI is defined as:

GEnI(x, y) = −
K∑

k=1

pk(x, y)log2 pk(x, y), (1)

where x , y are the pixel coordinates and pk(x, y) is the
probability of the pixel (x, y) for the label k ∈ K . The sil-
houettes are binary images, and therefore K : {0, 1}, so that
p1(x, y) = 1

T

∑T
t=1 I (x, y), and p0(x, y) = 1 − p1(x, y),

where T is the length of the gait cycle and I is the binary
image.
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Fig. 2 Several examples of GEnI, computed over a gait cycle. The gray level represents the entropy value in a pixel. As can be seen, legs and arms
have high gait entropy value, whereas static areas as torso have low values of entropy

In [2], the use of the GEnI descriptor is proposed to dis-
tinguish the dynamic and static areas of a GEI by measuring
Shannon entropy at each pixel location. The authors use the
GEnI to perform a feature selection, based on the relevance
of gait features extracted from GEI, instead of using GEnI as
gait descriptor directly as in [1].

These approaches [1,2] have some drawbacks that are
worth mentioning. Firstly, they are based on computing
entropy over the side view of the gait sequence. However,
some people tend to swing their arms from side to side while
walking, and they often rotate their torso slightly. This fact
lead us to think that some dynamic and structural information
of the individual is lost when GEI or GEnI is only computed
over the side view of the gait sequence, because by just using
a single 2D image view, a large part of 3D gait information is
discarded. Figure 2 shows the GEnI, computed over several
gait cycles.

Secondly, these approaches implicitly assume that people
walk along a straight line and their walking direction does not
change during one gait cycle. However, in real-life situations
people walk on curved trajectories in order to turn a corner
or to avoid an obstacle. When the subject is walking along
a curved path, the viewing angle change causes a decrease
in the performance for most single-view-based conventional
methods, due to appearance changes.

2.2 View-independent approaches

Appearance changes due to viewing angle changes cause dif-
ficulties for most of the appearance-based gait-recognition
methods. This situation cannot be easily avoided in practical
applications. There are three major approach categories to
sort out this problem, namely: (1) approaches that construct
3D gait information through multiple calibrated cameras; (2)
approaches that extract gait features which are invariant to
viewing angle changes; (3) approaches whose performance

relies on learning mapping/projection relationship of gaits
under various viewing angles [27].

Approaches of the first category are represented by
[3,21,36]. In [36], a polyhedral and surface-mapped 3D
approximation of the visual hull [28] (VH) is used to design a
multi-modal recognition approach, that combines both face
and gait recognition. Although a polyhedral VH model is
computed, the gait-recognition scheme is based on silhouette
analysis, which does not take advantage of all the available
information because the recognition is based on single view
silhouette analysis, instead of exploiting the 3D model.

Another approach that applies image-based rendering on
VHmodels to reconstruct gait features under a required view-
ing angle is presented in [3]. This approach tries to classify
the motion of a human in a view-independent way, but it has
two drawbacks. On the one hand, the position and orientation
of a virtual camera is estimated from a straight path. Tests
were performed only on straight path motions. On the other
hand, not all the 3D information contained in the VH is used,
because the features are extracted from 2D images rendered
only from a single view.

In [21], an observation angle is estimated from thewalking
direction, by fitting a 2D polynomial curve to the foot points.
Virtual images are synthesized from 3D models, so that the
observation angle of a synthesized image is the same that the
observation angle for the real image of the subject, which is
identified by using affine moment invariants extracted from
images as gait features. Themain advantage of this method is
that the setup assumesmultiple cameras for training, but only
one camera for testing. It is able to recognize people walking
on curved paths. However, as in the above twoworks, despite
3D models are used, features are extracted from 2D images,
so that, the amount of available information is restricted. On
the other hand, shadows on the floor complicate the estima-
tion of the foot points in silhouette images.

Approaches of the second category extract gait features
which are invariant to viewing angle change. [24] described
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a method to generate a canonical view of gait from any arbi-
trary view. The main disadvantage of this method is that the
performance is significantly droppedwhen the angle between
image plane and sagittal plane is large. Besides, the synthesis
of a canonical view is only feasible from a limited number
of initial views.

In [22], a method based on homography to compute
view-normalized trajectories of body parts obtained from
monocular video sequences was proposed. However, this
method efficiently works only for a limited range of views.
Planar homography has also been used to reduce the depen-
dency between the motion direction and the camera optical
axis [23], but thismethod seems not to be applicablewhen the
person is walking nearly parallel to the optical axis. In [16]
view-invariant features are extracted from GEI. Only parts
of gait sequences that overlap between views are selected for
gait matching, but this approach cannot cope with large view
angle changes under which gait sequences of different views
can have little overlap.

A self-calibrating view-independent gait recognition
based on model-based gait features is proposed in [13]. The
poses of the lower limbs are estimated based on markerless
motion estimation. Then, they are reconstructed in the sagit-
tal plane using viewpoint rectification. This method has two
main drawbacks that are worth mentioning: (1) the estima-
tion of the poses of the limbs is not robust from markerless
motion; (2) it is not applicable for frontal view because the
poses of the limbs become untraceable; and (3) this method
assumes that subjects walk along a straight line segment.

In [6] is proposed the use of motion descriptors based on
densely sampled short-term trajectories. This method is able
to recognize people in curved trajectories with promising
results.

The approaches of the third category rely on learningmap-
ping/projection relationship of gaits under various viewing
angles. The trained relationship may normalize gait features
from different viewing angles into shared feature spaces. An
example from this category can be read in [30], where LDA-
subspaces are learned to extract discriminative information
from gait features under each viewing angle.

A view transformation model (VTM) was introduced by
[32] to transform gait features from different views into the
same view. The method of Makihara et al. [32] creates a
VTM based on frequency-domain gait features, obtained
through Fourier transformation. To improve the performance
of this method, Kusakunniran et al. [26] created a VTM
based on GEI optimized by linear discriminant analysis
(LDA). A sparse-regression-based VTM for gait recogni-
tion under various views is also proposed in [27]. However,
this method cannot cope with changes in the direction of
motion.

Although methods of the third category have better abil-
ity to cope with large view angle changes compared to

other works, some common challenges are the following
[27]: (1) performance of gait recognition decreases as the
viewing angle increases; (2) since the methods rely on
supervised learning, it will be difficult for recognizing gait
under untrained/unknown viewing angles; (3) these methods
implicitly assume that people walk along straight paths and
that their walking direction does not change during a single
gait cycle (i.e. that people do not walk along curved trajec-
tories). However, people often walk on curved trajectories in
order to turn a corner or to avoid an obstacle.

3 Proposed method

This paper proposes a method to recognize people walk-
ing on unconstrained paths, even if they walk along curved
trajectories or change direction. The gait descriptors are
extracted from 3D aligned human reconstructions, so that
a greater amount information is analysed in contrast to other
related work, which compute the gait descriptors just from
2D images, discarding a significant part of the 3D gait infor-
mation.

In gait recognition, the dynamic of the information is very
useful, because it represents temporal transitions in human
behaviour. We propose to use the dynamic of information
about the relative motion on aligned 3D gait reconstructions
by measuring entropy at each voxel location.

Some entropy-based algorithms [1,2] split the gait
sequence into gait cycles, and to do this, the sequence has to
be analysed from the beginning to the end in order to obtain
the gait frequency. However, our gait-recognition algorithm
provides the name for the person as soon as possible with-
out splitting the gait sequence into gait cycles nor computing
the whole gait sequence before providing a response, what
makes ourmethod less restrictive thanmany other techniques
described in the literature.

Besides, some of thesemethods use single lateral cameras.
However, by using a single lateral camera, the individual
would leaves the field of view very soon, so the length of the
gait sequence is restricted. Since 3D gait volumes are centred
with respect to a global reference system and aligned along
their way, we can get more images from the volumes along
a sequence.

The proposed recognition algorithm is shown in Fig. 3.
The algorithmconsists of five steps that are carried out at each
time t . Entropy is computed on a sliding temporal window
of size L . These steps are exposed in detail in this section:

1. Silhouette extraction of each camera’s view by a back-
ground subtraction technique [19].

2. 3D reconstruction from silhouettes captured from sev-
eral viewpoints, by shape from silhouette (SfS) algorithm
[11].
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Fig. 3 Steps of our gait-recognition algorithm at time t . S1, S2 and Sn
represent human silhouettes extracted from the input frames, whereas
V , V ∗, and G represent a reconstructed 3D scene, an aligned 3D human
volume, and a gait signature, respectively

3. Person detection and gait alignment.
4. Gait signature update.
5. Classification of gait signature by a machine learning

algorithm whose output is the identity of a person known
by the multi-class classification system.

The aim of the first three steps of the algorithm is to gener-
ate a 3D volume with occupancy information of the person at
time t . In addition, the last two steps of the algorithm perform
the signature update and the gait classification.

3.1 3D reconstruction, detection and alignment

Our method starts by computing a 3D reconstruction of the
individual. To do this, we need the silhouettes from multi-
ple calibrated cameras. Calibrating a multi-camera setup is a
simple process that can be done in a few minutes.

After the 3D reconstruction, the gait volumes are aligned
and centred with respect to a global reference system, so
that the generation of the descriptors can be done as if the

person had walked on a treadmill in a certain direction. In
the following we explain these steps.

3.1.1 Silhouette extraction

As we have a static background, we use Horprasert’s algo-
rithm [19] to obtain silhouettes of the walking humans.
Horprasert’s algorithm is able to deal with local and global
perturbations, such as illumination changes, shadows and
lightening in controlled environments. This algorithm is able
to detectmovingobjects on colour images, in a scene thatmay
also contain shadows. After this, we filter the noise of binary
images through morphological operations such as opening
and closing.

3.1.2 3D reconstruction

Since our method generates the gait descriptors from 3D
occupation volumes, a 3D reconstruction procedure, such
as the SfS standard algorithm is required.

We assume a three-dimensional work area that is divided
into cubes of the same size called voxels. Let us also assume
that there is a set of cameras placed at known locations
and that we have the silhouettes of the foreground objects,
obtained by a background subtraction method.

As described in more detail in [11], SfS method examine
voxel projections in the foreground images in order to deter-
mine whether they belong to the shape of objects or not. Each
voxel is projected in all the foreground images and if its pro-
jection lays completely into a silhouette in all the foreground
images, then it is considered occupied. However, if the voxel
projects in a background region in any of the images, it is con-
sidered unoccupied. Finally, if the voxel projects partially in
a foreground region, it is considered to belong to an edge
and a decision must be made. We base this decision on the
area of the projected voxel that lays into the silhouette. This
procedure requires calibration parameters, such as the cam-
eramatrix, distortion coefficients (intrinsic parameters), pose
and orientation (extrinsic parameters) of each camera.

At the end, the result is a Boolean decision (0, 1) indicat-
ing whether the region of the space represented by the voxel
is empty or occupied. Figure 4 shows the 3D reconstruction
of a gait sequence.

3.1.3 Volume detection and alignment

Since we have a Vt reconstructed volume of a person in an
instant t along the way, it is required a mechanism of detec-
tion and alignment to achieve the independence which refers
to the point of view. So that the individual can walk freely in
the scene without the orientation and direction of its motion
can affect to the subsequent generation of gait descriptors.
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Fig. 4 Example of reconstructed gait sequence, sampled at 2Hz,where
each point represents the centre of a squared voxel. The time instant is
represented by different colours (colour figure online)

For this purpose, a 3D reconstructionof the scene is carried
out at time t , and then the volume belonging to a person has
to be detected. Although there is only one individual in the
scene, we assume that reconstructed shadows aswell as noise
can coexist, due to poor segmentation results.

By obtaining the groundmarginal distribution of occupied
voxels (ground projection of the volume), we detect the vol-
ume belonging to a person as that which has a greater volume
than a certain threshold θ , and its volume has fully entered
into the workspace.

When the volume of a person has been detected, the cen-
troid p of the ground region corresponding to the detected
volume is calculated and used to estimate the trajectory,
which is determined by the displacement vector, defined as:

vt = pt − pt−1, (2)

where t is the current time, pt is the current position of the
centroid, and pt−1 is the last known position. The angle of
the displacement vector is calculated using the expression:

αt = arctan
vty

vtx
. (3)

Ground projections of the individual can be seen in Fig. 5,
where the principal axis and displacement vector are repre-
sented at several moments of the gait sequence.

The angle of the displacement vector is used to construct a
rotation matrix, which is applied to align the gait volume by
changing the coordinate system, rotating it about the vertical
axis. Then, to reduce the workspace where the descriptor
will be computed, the aligned gait volume is translated into a
bounding-box of average human’s size, so that theworkspace
where the descriptor will be computed is reduced.

Although we assume a constant walking speed, the indi-
vidual could vary moderately the walking speed at certain

Fig. 5 Displacement vector (red line) of the individual is computed
at each time. The principal axis (blue line) is perpendicular to the dis-
placement vector (colour figure online)

times of the sequence. It could happen, for example, when
the individual is depicting a closed curved path.

If the walking speed of the individual is very slow in an
instant t , |vt | will be too small, which could result in a noisy
estimation of the angle αt . To attenuate this noise, and thus
smooth the path, we propose a weighted average of the dis-
placement vector angle as follows:

ᾱt = αt · β + ᾱt−1 · (1 − β), (4)

where

β = ||vt ||
maxi=0...t {||vi ||} . (5)

The person may be in some of these states of motion:

• Constant speed: if the speed of the individual is constant
(and it is the maximum speed known) then β = 1.

• Acceleration: if the individual is increasing the walking
speed, then β � 1, so we give more importance to the
current path angle. This case is similar to the constant
speed.

• Deceleration: if the individual is slowing its motion, the
modulus of the displacement vector may not be large
enough, causing oscillations in the angle. In this case it
would be ideal to give less importance to the current path
angle. Therefore, it must be that β � 0.

A method to decrease over time the denominator in
Eq. 5 should be applied if the gait sequence were too large.
The whole reconstructed gait sequence can be centred and
alignedwith respect to the same coordinate system. It is illus-
trated in Fig. 6.

3.2 Gait identification

The algorithm step that handles up the gait identification con-
sists of two basic steps, described below.
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Fig. 6 In the centre of the image, a 3D representation of GEnV com-
puted over L 3D-reconstructed and aligned volumes of an individual.
Voxels are represented as points. Intensity on gray level represent the
entropy value corresponding to that voxel. Marginal distributions of
GEnV are also shown

3.2.1 Descriptor generation

The first one is the generation of the gait descriptor. Our gait
descriptor is based on computing the entropy associated to
the voxel values of the 3D gait sequence.

Instead of using the Shannon’s logarithmic definition of
entropy, considered in [1,2], we use a definition of entropy
based on the exponential behaviour of information-gain, pro-
posed and justified by Pal and Pal [34].

To provide the name of the person at time t , without
computing the entire gait sequence, the probability of voxel
occupation has to be computed over a sliding temporal win-
dow of size L . Given an aligned gait volume V ∗

t , let us denote
the probability of voxel occupation (p1) at time t as:

p1(x, y, z) = 1

L

t∑

i=t−L

V ∗
i (x, y, z), (6)

and p0 as:

p0(x, y, z) = 1 − p1(x, y, z), (7)

where L refers to the number of previous volumes on which
the exponential entropy will be computed.

So that, the uncertainty associated with a voxel value over
the L previous volumes can be computed, at time t , as:

GEnV(x, y, z) = m

⎛

⎝
∑

k∈{0,1}
pk(x, y, z)e

(1−pk (x,y,z)) − 1

⎞

⎠ ,

(8)

where x , y and z are the voxel coordinates, and m is a nor-
malizing constant defined as m = 1/(e1−1/2 − 1).

Gait entropy volume (GEnV) gives an insight into the
information content of the gait sequence as the intensity value
at voxel location (x, y, z), which is proportional to its entropy
value.

Several candidate signatures can be proposed here. The
first approach suggest the use of the whole GEnV descriptor
as feature vector:

G GEnV = GEnV(x, y, z). (9)

However, its dimensionality is proportional to the size of
the voxelset, whichmight be too high (thousands of features).
In addition, we can use marginal distributions of the entropy
volume to reduce dimensionalitywithout loss of information.
GEnV and marginal distributions of it are shown in Fig. 6.

According to this, we propose the following candidate
signatures:

• G GEnV
F (z, y) = 1

Nx

∑Nx
x=0 GEnV(x, y, z),

• G GEnV
S (z, x) = 1

Ny

∑Ny
y=0 GEnV(x, y, z),

• G GEnV
T (x, y) = 1

Nz

∑Nz
z=0 GEnV(x, y, z).

The definition of the above signatures leads to think that
some of them might provide more information than others.
Hence, combinations of them can be used, in order to obtain
a more discriminative combined signature. Therefore, the
combined signature is defined as follows:

G GEnV
F⊕S⊕T = G GEnV

F ,G GEnV
S ,G GEnV

T , (10)

where ⊕ represents concatenation. So let us denote the set
of possible combinations as:

view : {S, F, T, S ⊕ F, S ⊕ T, F ⊕ T, S ⊕ F ⊕ T }. (11)

Similarly, since our algorithm carries out the alignment of
3D-reconstructed gait volumes, we can also compute GEnI
of Bashir et al. [1] on binarized marginal distributions (sil-
houettes) of V ∗

t . So, let us denote the following signatures,
which can also be combined:

• G GEnI
F , GEnI computed on binarized marginal distribu-

tions of V ∗ along the X -axis,
• G GEnI

S , GEnI computed on binarized marginal distribu-
tions of V ∗ along the Y -axis,
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• G GEnI
T , GEnI computed on binarized marginal distribu-

tions of V ∗ along the Z -axis.

Finally, the total set of proposed signatures is represented
as:

G desc
view (12)

where desc : {GEnV,GEnI}.

3.2.2 Gait classification

The gait signature obtained at time t is the feature vector used
for recognition. Each of these feature vectors are assigned to
a class label that corresponds to one of the individuals in the
database. This idea iswell known asmulti-class classification
system.

We use a support vector machine (SVM) for training and
classification. SVM is a partial case of kernel-based methods
[5]. It maps feature vectors into a higher-dimensional space
using a kernel function and builds an optimal linear discrim-
inating function in this space or an optimal hyper-plane that
fits into the training data.

Our recognition algorithm provides the identity of the per-
son as soon as possible, and it does not require the sequence
to be split into gait cycles. Thismakes ourmethod less restric-
tive compared to other techniques of the literature. At each
new 3D volume, a class label is produced, based on the L
previous ones.

A majority vote policy over a sliding temporal window of
size W is used, in order to reinforce and smooth the results
over time, so that the use of this window causes a delay of
L + W frames in obtaining the identity of the subject. In the
subsequent volumes the system gives a response at the rate
of a label per new volume. The majority voting system over
a sliding temporal window is shown in Fig. 7.

t
1
t
2
t
3
t
4
t
5
t
6
t
7
t
8
t
9
t
10
t
11

t
n

t
12

L=4

L=4

vote at t
4

vote at t
5

vote at t
6

W=3 majority vote at t
6

L=4

L=4 vote at t
7

W=3 majority vote at t
7

Fig. 7 Majority vote policy over a sliding temporal window. In the
example, the size of the signature is set to L = 4, and the size of
the voting window is set to W = 3. This means that the probability
of occupation p1 (see Eq. 6) is calculated over the previous L = 4
volumes

Before training a SVM model, we adopt the subspace
component and discriminant analysis, based on principal
component analysis (PCA) and LDA, which seeks to project
the original features to a subspace of lower dimensionality
so that the best data representation and class separability can
be achieved simultaneously [20].

4 Experiments and discussion

In this section, we describe the datasets we have used, and
then we present the experiments conducted to evaluate the
proposed gait-recognition method and signatures.

4.1 Datasets description

In order to be used by our algorithm, the dataset must contain
2D gait images captured by multiple synchronized cameras,
which have to be calibrated.

Two synchronized multi-view datasets have been used to
perform our experiments, the AVA Multi-View Dataset for
Gait Recognition (AVAMVG)1 [31] and the Kyushu Univer-
sity 4D Gait Database (KY4D)2 [21].

In AVAMVG, 20 subjects perform 9 walking trajectories
in an indoor environment. Each trajectory is recorded by 6
synchronized IEEE-1394 FireFlyMV FFMV-03M2C colour
cameras placed around a room that is crossed by the subjects
during the performance, according to the distribution shown
in diagram of Fig. 8. The actors enter into the scene from
different entry points, which makes this dataset suitable to
test view-independent gait-recognitionmethods. Trajectories
{t1, . . . , t3} are straight while {t4, . . . , t9} are curved.

The video sequences of AVAMVG have a resolution of
640 × 480 pixels, and they were recorded at a rate of 25
frames per second. An example of this dataset is shown in
Fig. 9.

With respect to KY4D gait database, it is composed of
sequential 3D models and image sequences of 42 subjects
walking along four straight and two curved trajectories. The
sequences were recorded by 16 cameras, at a resolution of
1032 × 776 pixels. The setup is shown in Fig. 10. Although
KY4D gait database provides sequential 3D models of sub-
jects, we have reconstructed them with the same SfS method
and resolution parameters used for getting the AVAMVG
models.

As far as we know, there are others well-known multi-
camera databases, such as the CMUmotion of body database
[14] and CASIA Dataset B [42]. However, since these data-

1 Publicly available at: http://www.uco.es/investiga/grupos/ava/node/
41.
2 Publicly available at: http://robotics.ait.kyushu-u.ac.jp/research-e.
php?content=db.
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Fig. 8 Workspace setup of AVAMVGdataset, where {c1, . . . , c6} rep-
resent the set of cameras of the multi-view setup and {t1, . . . , t9}
represent the different trajectories performed by each actor

bases do not include information on camera parameters, 3D
models of walking people cannot be obtained. Moreover, in
the case of CASIA, videos are not synchronized [39]. There-
fore, we could not use these databases in the experiments of
the present study.

4.2 Experimental setup

We describe below the different experiments performed to
test our gait-recognition method, 3D gait descriptors and
derived signatures.

Fig. 10 Experimental setup of KY4D

• ExperimentA: baseline.Weadopt the approach described
in [1] as baseline, which will be used to benchmark the
performance of our proposedmethod.Aswehave aligned
the 3D volumes, we can compute entropy on binarized
marginal distributions of the reconstructed volumes (sil-
houettes) and test GEnI independently of the trajectory,
even with curved paths. For this experiment, we use all
trajectories (linear and curved) of the AVAMVG and
KY4D databases. As it was described in [1], matching
based on minimal distances between GEnI descriptors
is carried out. Before matching, a PCA+LDA feature
reduction process is performed. We use a leave-one-out
cross-validation strategy for both databases.

• Experiment B: GEnV. The aim of this experiment is to
evaluate the performance obtained by using the G GEnV

signature. Since it dimensionality is very large (propor-
tional to the 3D reconstruction resolution), we also aim
to evaluate the impact of the dimensionality reduction
(PCA) and the effect of improving the class separability

Fig. 9 Example of AVAMVG dataset. People walking in different directions, from multiple points of view
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by preserving as much of the class discriminatory infor-
mation as possible (LDA), on final recognition perfor-
mance.WeuseSVManda leave-one-out cross-validation
strategy with all trajectories (linear and curved) for both
AVAMVG and KY4D databases.

• Experiment C: single signatures. In this experiment we
try to determine the most discriminative GEnV-based
single signature. We also aim to compare the obtained
performance by using single signatures based on the
GEnV, with the obtained performance by using single
signatures based on GEnI. As in the experiment B, we
also apply PCA+LDA in order to achieve the best data
representation and class separability simultaneously. We
use a SVM and leave-one-out cross-validation strategy
with all trajectories (linear and curved) of bothAVAMVG
and KY4D databases.

• Experiment D: combined signatures. The aim of this
experiment is to find out the most discriminative com-
bined GEnV signature. As in the Experiment C, we also
aim to compare the obtained performance by using com-
binedGEnVsignatureswith the performance obtained by
using combined GEnI signatures. We apply PCA+LDA,
SVM, and leave-one-out cross-validation strategy with
all trajectories (linear and curved) for both databases.

• Experiment E: majority vote policy over a sliding tem-
poral window. This experiment focuses on testing the
effect of the majority vote policy over a sliding tem-
poral window on the final performance. We select the
most discriminative signatures that were found out in the
experiment D and we test them on both databases.

• Experiment F: number of cameras. This experiment
focuses on determining the number of cameras which
are required in the reconstruction step to achieve a good
performance.

• Experiment G: training and testing with different camera
setup. This experiment aim to test the effect of training
and testing with different subsets of cameras.

• Experiment H: training on straight paths and testing
on curved paths. In this experiment, we use linear tra-
jectories for training and curved trajectories for testing.
We compare the best signatures found in the previous
experiments with some related methods that are able to
recognize people on curved trajectories.

Before conducting the experiments, we need to determine
the value of several basic parameters of our method. Thus,
considering the 3D reconstruction step, the first parameter
to be determined is the voxel size. We consider that a voxel
size of 0.27×10−4 m3 is enough to get a detailed 3D human
reconstruction.

The average corporal volume for humans is 66.4 l mea-
sured by the water displacement method in 521 people aged
between 17 and 51 years [12]. Using a voxel size of 2.7 cl,

the number of voxels belonging to a person in the 3D volume
should be about 2459. Thus, for θ > 1×103 (see Sect. 3.1.3)
the system should be able to detect both children and adults.

The number of L volumes where entropy is computed is
set to L = 20, because with a rate of 25 volumes per seconds,
this value roughly matches with the average length of a gait
cycle.

Lastly, regarding the dimensionality reduction, we tested
a range from ε = 0.75 to ε = 0.99 for the percentage of
variance (energy contained in the components signal) that
PCA should retain.

4.3 Results

We present the results of the experiments that were described
in the previous section.

Wehave adopted the approach described in [1] as baseline.
Table 1 shows its performance for each database. As we have
3D aligned gait volumes, the GEnI can be computed over
binarized marginal distributions of the aligned volumes, i.e
silhouettes. We perform matching between GEnI features
and we use a leave-one-out cross-validation strategy. In the
case of the AVAMVG dataset, each fold is composed by a
tuple formed by a set of 20 gait sequences (one sequence
per actor) for testing, and by the remaining eight trajectories
of each actor for training, i.e. 8 × 20 sequences for training
and 20 sequences for test. For the KY4D gait dataset, each
fold is composed by 42 sequences for testing (one sequence
per actor) and by the remaining five sequences of each actor
(i.e. 42 × 5 sequences) for training. To make the choice of
SVM parameters independent of the sequence test data, we
cross-validate the SVMparameters on the training set. As can
be seen, the obtained accuracy is 90.27% for the AVAMVG
dataset and 87.67% for the KY4D dataset. It corresponds to
Experiment A (see Sect. 4.2).

We show in Table 2 the performance of G GEnV as gait
signature. Due to the high dimensionality, which is propor-
tional to the 3D gait volume resolution (about 74 × 103

features in a volume with base of 1m2 and height of 2m,

Table 1 Results of GEnI baseline approach (Experiment A)

Database Signature Without dim.
red. (%)

PCA
(%)

PCA+LDA
(%)

ε

AVAMVG GEnI [1]
(baseline)

79.23 74.06 90.27 0.95

KY4D GEnI [1]
(baseline)

87.97 84.82 87.67 0.95

We report the quantitative results obtained with the approach described
in [1]. From the fourth to the fifth columns are indicated the dimen-
sionality reduction techniques applied. The sixth column indicates the
best PCA energy found for each descriptor. Each row corresponds to a
database
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Table 2 Results obtained by usingGEnV as gait signature (Experiment
B)

Database Signature PCA (%) PCA+LDA (%) ε

AVAMVG GGEnV 77.63 70.10 0.95

KY4D GGEnV 78.46 94.52 0.95

From the third to the fourth columns are indicated the dimensionality
reduction techniques applied. The fifth column indicates the best PCA
energy found for each descriptor. Each row corresponds to a database.
The size of the sliding temporal window for majority voting is set to
W = 1

with voxel size of 2.7cl), we have applied dimensionality
reduction techniques. In this experiment, the number of fea-
tures in AVAMVG after applying dimensionality reduction
is 101 with PCA, and C − 1 = 19 with PCA+LDA where
C is the number of classes in our multi-class system. On the
other hand, for the KY4D database, the number of features
is 670 after PCA, and 41 after PCA+LDA.

We use SVM with radial basis functions (RBF) and a
leave-one-out cross-validation strategy. To make the choice
of SVM parameters independent of the sequence test data,
we cross-validate the SVM parameters on the training set.
In this experiment, for the sake of simplicity, we disabled
the sliding temporal window for majority voting (W = 1).
As can be seen, by using this signature on the AVAMVG
gait dataset, the accuracy on subject identification is rather
far from baseline. However, with the KY4D gait database,
the accuracy is higher than the baseline. It corresponds to
Experiment B (see Sect. 4.2).

In Tables 3 and 4 we compare the obtained performance
by using a single signature (not combined) based on GEnV,
with the obtained performance by using a single GEnI sig-
nature, for the AVAMVG dataset and the KY4D database,
respectively. It corresponds to experiment C (see Sect. 4.2).
This experiment was carried out without applying the slid-
ing temporal window of majority vote (W = 1). In order
to achieve the best data representation and class separabil-
ity simultaneously, we apply PCA+LDA to the training and
test data. A SVM-RBF with leave-one-out cross-validation
strategy is used for training and classification. As we may
observe, the G GEnV

S signature improves results fairly well
compared to baseline on both gait databases.

The obtained accuracy by using LDA is very similar than
the obtained accuracy by just using PCA. However, the num-
ber of features with LDA is significantly reduced compared
with PCA. If the system can be trained off-line, LDA allows
SVM to handle a feature space of low dimensionality, and
the identity of the individual can be given in less time.

Experiment E (see Sect. 4.2) focuses on testing the effect,
on the final performance, of the majority voting policy over
a sliding temporal window. The size of the sliding tempo-
ral window for majority voting is limited by the number of
available gait signatures for each sequence. Figures 11, 12,

Table 3 Recognition results obtained by using a single signature based
on GEnV compared to the results obtained by using a single signature
based on GEnI, on the AVAMVG gait database (Experiment C)

Signature Without dim. red. (%) PCA (%) PCA+LDA (%) ε

GGEnV
S 97.19 97.03 96.84 0.95

GGEnI
S 95.34 94.81 92.63 0.85

GGEnV
F 94.27 94.15 91.94 0.95

GGEnI
F 90.78 89.47 87.06 0.85

GGEnV
T 70.73 65.86 58.41 0.90

GGEnI
T 60.50 57.27 50.52 0.85

From the third to the fourth columns are indicated the dimensional-
ity reduction techniques applied. The fifth column indicates the best
PCA energy found for each descriptor. The size of the sliding temporal
window for majority voting is set to W = 1

Table 4 Recognition results obtained by using a single signature based
on GEnV compared to the results obtained by using a single signature
based on GEnI, using the KY4D gait database (Experiment C)

Signature Without dim. red. (%) PCA (%) PCA+LDA (%) ε

GGEnV
S 90.92 92.74 92.50 0.95

GGEnI
S 88.90 89.53 87.88 0.90

GGEnV
F 84.42 84.75 84.40 0.99

GGEnI
F 77.25 78.34 76.06 0.90

GGEnV
T 78.42 78.68 76.35 0.95

GGEnI
T 76.43 74.55 73.60 0.85

From the third to the fourth columns are indicated the dimensional-
ity reduction techniques applied. The fifth column indicates the best
PCA energy found for each descriptor. The size of the sliding temporal
window for majority voting is set to W = 1

13 and 14 show how the accuracy for selected signatures
(using PCA+LDA) increases with respect to the size of the
sliding temporal window for majority voting. As can be seen,
the use of the sliding temporal window for majority voting
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increases the performance significantly, achieving the perfect
identification in some cases by using single signatures based
on GEnV.

We have hypothesized that the combination of signatures
will lead to a better performance, because the concept of 3D
gait volume enables us to get a larger amount of dynamical
and structural information of gait.

In order to find out the most discriminative combined
signature on both gait databases, we have carried out the
Experiment D (see Sect. 4.2). In Tables 5 and 6 we report the
performance obtained by using combined GEnV signatures,
compared with the performance obtained by using combined
GEnI signatures. We use SVM-RBF with a leave-one-out
cross-validation strategy.

As can be seen, both G GEnV
S⊕F and G GEnV

S⊕F⊕T signatures
provide good results on AVAMVG and KY4D gait data-
bases. However the accuracy’s confidence intervals at 95%
obtained for both measures are overlapped. For this reason,
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Table 5 Comparative results obtainedwith combinedGEnV signatures
and combinedGEnI signatures using theAVAMVGdataset (Experiment
D)

Signature PCA (%) PCA+LDA (%) ε

GGEnV
S⊕F 97.94 97.95 0.95

GGEnI
S⊕F 96.82 95.44 0.85

GGEnV
S⊕T 96.51 95.99 0.95

GGEnI
S⊕T 96.03 94.63 0.80

GGEnV
F⊕T 92.74 92.82 0.99

GGEnI
F⊕T 90.04 90.27 0.90

GGEnV
S⊕F⊕T 97.20 97.16 0.95

GGEnI
S⊕F⊕T 97.52 97.29 0.90

From the second to the third columns are indicated the dimensional-
ity reduction techniques applied. The fourth column indicates the best
PCA energy found for each descriptor. The size of the sliding temporal
window for majority voting is set to W = 1

Table 6 Comparative results obtainedwith combinedGEnV signatures
and combined GEnI signatures using the KY4D dataset (Experiment D)

Signature PCA (%) PCA+LDA (%) ε

GGEnV
S⊕F 94.23 94.04 0.95

GGEnI
S⊕F 92.40 91.18 0.90

GGEnV
S⊕T 94.34 93.76 0.95

GGEnI
S⊕T 93.91 92.18 0.90

GGEnV
F⊕T 90.62 89.47 0.99

GGEnI
F⊕T 87.58 86.12 0.95

GGEnV
S⊕F⊕T 95.00 95.13 0.95

GGEnI
S⊕F⊕T 94.28 93.17 0.90

From the second to the third columns are indicated the dimensional-
ity reduction techniques applied. The fourth column indicates the best
PCA energy found for each descriptor. The size of the sliding temporal
window for majority voting is set to W = 1
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we cannot conclude that one is better than the other from
the point of view of accuracy. On the other hand, from the
point of view of computational cost, the cost of G GEnV

S⊕F⊕T is
greater than the computational cost of G GEnV

S⊕F . Therefore, for
a system in operation, G GEnV

S⊕F could be the most appropriate
signature.

As part of experiment E, we have tested the effect, on the
final performance, of themajority voting policy over a sliding
temporal window and combined signatures. Figures 15, 16,
17 and18 show the accuracy for the selected signatures (using
PCA+LDA) with respect to the size of the sliding temporal
window for majority voting. As we may observe, the use of
the sliding temporal window for majority voting increases
the performance significantly. The accuracy reaches 100%
for all the signatures based on GEnV on both dataset.

In order to determine the number of cameras that should
be employed and its effect on the performance, we have
designed a leave-one-out cross-validation experiment. As in
the other experiments, to make the choice of SVM parame-
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ters independent of the sequence test data, we cross-validate
the SVM parameters on the training set. We selected the sig-
nature configuration that achieved the best performance in
the previous experiments (G GEnV

S⊕F and G GEnV
S⊕F⊕T ) and then we

tested them with a set of KY4D models which have been
reconstructed using a number of cameras in the range 2–16.
As can be seen in Fig. 19, with just three calibrated cameras,
our method is able to correctly classify up to 95% of individ-
uals, independently of the path, evenwith curved trajectories.

To perform Experiment G, we have reconstructed all the
gait sequences of KY4D from two subsets of cameras. The
subset A is composed by cameras {07451471, 07121059,
07451527, 07451476}, whereas the subset B is composed
by cameras {07340706, 07172435, 07230135, 07451462}.
Then, we designed a leave-one-out cross-validation exper-
iment, but using the subset A for training and subset B for
testing.We obtained 90.57% of recognition rate with G GEnV

S⊕F
and 94.26% with G GEnV

S⊕F⊕T .
The results shown in Tables 7 and 8 correspond to Exper-

iment H (see Sect. 4.2). For the corresponding tests on
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Table 7 Comparative of recognition results on AVAMVG dataset
(Experiment F)

Method Test curve t4 (%) Test curve t7 (%) AVG (%)

Castro et al. [6] 95 95 95

Iwashita et al. [21] 35.14 37.71 36.42

GGEnV
S⊕F (PCA+LDA) 97.61 98.41 98.01

GGEnV
S⊕F⊕T (PCA+LDA) 97.62 98.84 98.23

GGEnI
S⊕F⊕T (PCA+LDA) 96.20 98.42 97.31

Training on trajectories t1 + t2 + t3 (straight paths). Each row corre-
sponds to a different method. The second and third columns indicate the
tested trajectory. The size of the sliding temporal window for majority
voting is set to W = 80

Table 8 Comparative of recognition results on KY4D dataset (Exper-
iment F)

Method Test curve 1 (%) Test curve 2 (%) AVG (%)

Iwashita et al. [21] 61.90 71.40 66.65

GGEnV
S⊕F (PCA+LDA) 44.92 42.08 43.50

GGEnV
S⊕F⊕T (PCA+LDA) 57.83 79.28 68.55

GGEnI
S⊕F⊕T (PCA+LDA) 55.26 87.31 71.28

Training on trajectories 1+ 2+ 3+ 4 (straight paths). Each row corre-
sponds to a different method. The second and third columns indicate the
tested trajectory. The size of the sliding temporal window for majority
voting is set to W = 135

AVAMVG, we have trained on linear trajectories {t1, t2, t3}
(all in the same set), and tested on curved trajectories {t4, t7}
(see corresponding columns). For theKY4Ddataset, we have
trained on linear trajectories {1, 2, 3, 4} (all in the same set)
and tested on curved trajectories {curve 1 and curve 2} (see
Sect. 4.1 for more details). We have compared our best sig-
natures with other related methods that are able to recognize
people on curved trajectories, such as [6,21]. The size of the
sliding temporal window for majority voting of our method
is set toW = 80 for AVAMVGandW = 135 for KY4D. The

methodofCastro et al. [6] only canbe tested on theAVAMVG
dataset, because it need colour or grayscale images, and the
KY4D dataset only provides binary silhouettes and 3Dmod-
els.

Wehavenotice a lowperformance of themethodpresented
in [21] when it is trained with straight paths and tested with
curves of the AVAMVG dataset. We think it may be due
to the low number of cameras of AVAMVG (6 cameras), in
contrastwith the number of cameras of theKY4Dgait dataset
(16 cameras). On the one hand, it seems reasonable to think
that fewer cameras leads us to obtain 3D reconstructions of
lower precision. Besides the number of cameras, the quality
of silhouettes is also a factor that must be considered. On
the other hand, in the AVAMVG dataset, depending on the
viewpoint and performed trajectory, people appear at diverse
scales, even showing partially occluded body parts, which
adversely affects to the performance of [21].

If the classifier is trained with just linear trajectories, both
G GEnI
S⊕F⊕T and G GEnV

S⊕F⊕T signatures provide good results. How-
ever, training with both linear and curved trajectories leads
to get better performance, as we can see in results of Exper-
iments D and E, and in that case, GEnV-based signatures
provide the best performance. We think when a subject is
walking along a curved path, the gait pattern is consequently
modified, and signatures based on GEnV are able to better
capture dynamical 3D information than signatures based on
GEnI, as was probed in Experiments D and E. For this rea-
son, on unconstrained paths, we suggest the use of G GEnV

S⊕F or
G GEnV
S⊕F⊕T signatures.

5 Conclusions

This paper has proposed a method to recognize walking
humans independently of the viewpoint, even with curved
trajectories. Our method achieves a good recognition rate on
unconstrained paths, in contrast to other view-independent
approaches which restrict the view change to a few angles on
straight trajectories.

A new gait descriptor, called GEnV has also been pro-
posed. GEnV focuses on capturing 3D dynamic information
of walking humans through the concept of entropy, applied
on volumetric reconstructions. The use of volumetric recon-
structions allowsmore information to be analysed in contrast
to other related works, which only compute the gait descrip-
tors from 2D images, discarding a significant part of 3D
dynamical information of the gait. Several signatures based
onGEnVhave also beenproposed in order to get better recog-
nition rate.

We have tested the classification performance for each
proposed gait signature on the AVAMVG [31] and on the
KY4D [21]. The experimental results show that GEnV-based
signatures such as G GEnV

S⊕F and G GEnV
S⊕F⊕T are the most reli-
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able signatures for using with our gait-recognition method
on unconstrained path, providing good results in both gait
databases. Finally, by using a majority voting policy on a
sliding temporal window, the system is able to reach a per-
fect identification of individuals for both datasets.
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Chapter 7

Rotation Invariant Descriptor
based on 3D Angular Analysis

This chapter presents two methods to recognize walking humans on uncon-
strained paths, even with curved or straight trajectories, and regardless di-
rection changes. Both methods are based on 3D angular analysis of the
movement of the walking humans. The first [110] takes advantage of 3D
reconstructions to extract a rotation invariant gait descriptor, whereas the
second [111] is able to extract the rotation invariant gait features directly
from silhouettes obtained from multiple views, by using calibration informa-
tion instead of 3D reconstructions.

A new rotation invariant gait descriptor is presented in the following
sections. The methods based on this descriptor are able to cope with rotation
changes, while preserving enough discriminatory information from the gait.
They focuses on capturing 3D dynamical information of gait, in contrast to
other related works which discard a significant part of 3D information.

Main publications associated to this chapter:

• D. López-Fernández, F.J. Madrid-Cuevas, A. Carmona-Poyato, R.
Muñoz-Salinas, and R. Medina-Carnicer. A new approach for multi-
view gait recognition on unconstrained paths. Journal of Visual
Communication and Image Representation, 38:396-406, 2016. ISSN
1047-3203. doi: 10.1016/j.jvcir.2016.03.020. url: http://www.

sciencedirect.com/science/article/pii/S1047320316300232
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Contributions to Gait Recognition Using Multiple-Views

• D. López-Fernández, F. J. Madrid-Cuevas, A. Carmona-Poyato, R.
Muñoz Salinas, and R. Medina-Carnicer. Multi-view gait recogni-
tion on curved trajectories. In Proceedings of the 9th International
Conference on Distributed Smart Cameras, ICDSC’15, pages 116-121,
New York, NY, USA, 2015. ACM. ISBN 978-1-4503-3681-9. doi:
10.1145/2789116.2789122. url: http://dl.acm.org/citation.cfm?

id=2789122

• D. López-Fernández, F.J. Madrid-Cuevas, A. Carmona-Poyato, M.J.
Maŕın-Jiménez, and R. Muñoz-Salinas. The AVA Multi-View Dataset
for Gait Recognition. In Activity Monitoring by Multiple Dis-
tributed Sensing, Lecture Notes in Computer Science, pages 26-39.
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chapter/10.1007%2F978-3-319-13323-2_3

7.1 Angular analysis on 3D human reconstruc-

tions

The following paper presents a detailed description and experimental results
of a new method that uses 3D human reconstructions to extract gait features
which are invariant to rotation changes.
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a b s t r a c t

Direction changes cause difficulties for most of the gait recognition systems, due to appearance changes.
We propose a new approach for multi-view gait recognition, which focuses on recognizing people walk-
ing on unconstrained (curved and straight) paths. To this effect, we present a new rotation invariant gait
descriptor which is based on 3D angular analysis of the movement of the subject. Our method does not
require the sequence to be split into gait cycles, and is able to provide a response before processing the
whole sequence. A Support Vector Machine is used for classifying, and a sliding temporal window with
majority vote policy is used to reinforce the classification results. The proposed approach has been exper-
imentally validated on ‘‘AVA Multi-View Dataset” and ‘‘Kyushu University 4D Gait Database” and com-
pared with related state-of-art work. Experimental results demonstrate the effectiveness of this
approach in the problem of gait recognition on unconstrained paths.

� 2016 Elsevier Inc. All rights reserved.

1. Introduction

Research on human gait as a biometric feature for identification
has received a lot of attention due to the apparent advantage that it
can operate at a distance and can be applied discreetly without
needing the active participation of the subject [1]. However, gait
recognition performance is significantly affected by changes in var-
ious covariate conditions such as clothing [2], camera viewpoint
[3,4], load carrying [5], and walking speed [6].

According to camera viewpoint, the previous work can be cate-
gorized into two approaches: view-dependent and view-
independent approaches. View-dependent approaches assume that
the viewpoint does not change while walking. In such methods, a
change in the appearance, caused by a viewpoint change, will
adversely affect to the recognition [7]. For example, when a subject
walks along a curved trajectory, the observation angle between the
walking direction of the subject and the camera optical axis is
gradually changed during the gait cycle. Fig. 1 shows the influence
of a curved path on the silhouette appearance. On the contrary, the

view-independent approaches aim to recognize people under dif-
ferent viewing angles. However, some of them do not allow curved
trajectories or direction changes during walking.

This paper presents a new approach to recognize people walk-
ing along curved trajectories on unconstrained paths. Some poten-
tial applications of this work are access control in special or
restricted areas (e.g. military bases, governmental facilities) or
smart video surveillance (e.g. bank offices). This work also can be
used for staff identification on laboratories or medical isolation
zones where subjects wear special clothes that do not allow them
to show the face or use the fingerprint (e.g. protective clothing for
viral diseases).

The rest of the paper is structured as follows. Section 2 presents
the most relevant works related to ours, making a clear distinction
between view-dependent and view-independent methods. Sec-
tion 3 presents a new rotation invariant gait descriptor. Section 4
shows the details of our gait recognition method. An analysis of
the performance is given in Section 5. Finally, we conclude this
paper in Section 6.

2. Related work

2.1. View-dependent approaches

One of the earliest view-dependent approaches can be seen in
[8], where it is used the width of the outer contour of the binarized
silhouette from a side view, to build a descriptor which contains

http://dx.doi.org/10.1016/j.jvcir.2016.03.020
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both structural features and dynamic aspects of gait. Feature vec-
tors derived from binary silhouettes have been also used to train
Hidden Markov Models [9]. The contours of silhouettes have also
been used [10,11].

In addition, in [12] it is presented a gait recognition method
which analyses the shape of the silhouette using Procrustes Shape
Analysis and Elliptic Fourier Descriptors. In [13] it is proposed a
gait representation called Gait Energy Image (GEI), which is the
average of all silhouette images for a single gait cycle.

Based on the idea of GEI, Depth Energy Image (DEI) was defined
in [14], which is simply the average of the depth silhouettes taken
along a gait cycle, over the front view. GEI is also extended in [15]
to consider depth information from the side view, by means of a
new feature called Depth Gradient Histogram Energy Image
(DGHEI). In [16] a time-sliced averaged motion history image
(TAMHI) alongside the histograms of oriented gradients (HOG) to
generate gait signatures.

In [17] it is presented the Gait Energy Volume (GEV), a binary
voxel-discretized volume which is spatially aligned and averaged
over a gait cycle. The authors apply the GEV on partial reconstruc-
tions obtainedwithdepth sensors fromthe front viewof the individ-
ual. Anextendedwork fromGEV [17] that combines the frontal-view
depth gait image and side-view 2D gait silhouette by means of a
back-filling technique is presented in [18]. In [19], the depth and
RGB frames from Kinect are register to obtain smooth silhouette
shape along with depth information. A partial volume reconstruc-
tion of the frontal surface of each silhouette is done and the Pose
Depth Volume (PDV) feature is derived from this volumetric model.

The performance of the above methods depends on the view-
point. As was stated above, appearance changes due to viewing
angle changes cause difficulties for most of the gait recognition
methods, and this situation cannot be easily avoided in practical
applications.

2.2. View-independent approaches

There are three major approach categories to sort out this prob-
lem [3], namely: (1) approaches that construct 3D gait information

through multiple calibrated cameras; (2) approaches that extract
gait features which are invariant to viewing angle changes; (3)
approaches whose performance relies on learning mapping/projec-
tion relationship of gaits under various viewing angles.

Approaches of the first category are represented by [4,20–22].
In [21], a 3D approximation of a Visual Hull (VH) [23] is used to
design a multi-modal and model-based gait recognition approach.
Seely et al. [20] proposed an appearance-based approach which
uses 3D volumetric data to synthesize silhouettes from a fixed
viewpoint relative to the subject. The resulting silhouettes are then
passed to a standard 2D gait analysis technique, such as the aver-
age silhouette.

Another approach that applies image-based rendering on a 3D
VH model to reconstruct gait features under a required viewing
angle is presented in [22]. This approach tries to classify the
motion of a human in a view-independent way, but it has two
drawbacks. On the one hand it considers only straight paths to esti-
mate the position and orientation of a virtual camera. Tests were
performed only on straight path motions. On the other hand, not
all the 3D information available in the VH is used, because feature
images are extracted from 2D images rendered only from a single
view.

In [4], an observation angle at each frame of a gait sequence is
estimated from the walking direction, by fitting a 2D polynomial
curve to the foot points. Virtual images are synthesized from a
3D model, so that the observation angle of a synthesized image
is the same that the observation angle for the real image of the sub-
ject, which is identified by using affine moment invariants
extracted from images as gait features. The advantage of this
method is that the setup assumes multiple cameras for training,
but only one camera for testing. However, this approach requires
to split the sequence into gait cycles and assumes that the gait
phase of the first frame of a gait cycle of a subject is the same for
each person in the database. Besides, shadows on the floor compli-
cate the estimation of the foot points in silhouette images.

In the above four works, despite 3D models are used, the gait
recognition scheme is based on silhouette analysis, what restricts
a large amount of discriminant information because the recogni-
tion relies on single view silhouette analysis, instead of analyze
the 3D information.

Approaches of the second category extract gait features which
are invariant to viewing angle change. In [24], it is described a
method to generate a canonical view of gait from any arbitrary
view. This method can work with a single calibrated camera but
the synthesis of a canonical view is only feasible from a limited
number of initial views. The performance is significantly dropped
when the angle between image plane and sagittal plane is large.

In [25], a method based on homography to compute view-
normalized trajectories of body parts obtained from monocular
video sequences was proposed. But this method efficiently works
only for a limited range of views. Planar homography has also been
used to reduce the dependency between the motion direction and
the camera optical axis [26], however this method seems not to be
applicable when the person is walking nearly parallel to the optical
axis. In [27] view-invariant features are extracted from GEI. Only
parts of gait sequences that overlap between views are selected
for gait matching, but this approach cannot cope with large view
angle changes under which gait sequences of different views can
have little overlap. Neither it can be applied to recognize people
walking on curved trajectories.

A self-calibrating view-independent gait recognition based on
model-based gait features is proposed in [28]. The poses of the
lower limbs are estimated based on markerless motion estimation.
Then, they are reconstructed in the sagittal plane using viewpoint
rectification. This method has two main drawbacks that are worth
mentioning: (1) the estimation of the poses of the limbs is not

Fig. 1. In a curved path, the observation angle between the walking direction of the
subject and optical axis of the camera is gradually changed, which affects the
silhouette appearance.
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robust from markerless motion; (2) it is not applicable for frontal
view because the poses of the limbs become untraceable; and (3)
it is assumed that subjects walk along a straight line segment.

In [29] is proposed the use of motion descriptors based on den-
sely sampled short-term trajectories. This method is able to recog-
nize people in curved trajectories with promising results.

The approaches of the third category rely on learning mapping/
projection relationship of gaits under various viewing angles. The
trained relationship may normalize gait features from different
viewing angles into shared feature spaces. An example from this
category can be read in [30], where LDA-subspaces are learned to
extract discriminative information from gait features under each
viewing angle.

A View Transformation Model (VTM) was introduced by [31] to
transform gait features from different views into the same view.
The method of Makihara et al. [31] creates a VTM based on
frequency-domain gait features, obtained through Fourier Trans-
formation. To improve the performance of this method, Kusakunni-
ran et al. [32] created a VTM based on GEI optimized by linear
discriminant analysis. A sparse-regression-based VTM for gait
recognition under various views is also proposed in [3]. However,
this method cannot deal with changes in the direction of motion.
Neither it can be applied to recognize people walking on curved
trajectories.

Although methods of the third category have better ability to
cope with large view angle changes compared to other works,
some common challenges are the following [3]: (1) performance
of gait recognition decreases as the viewing angle increases; (2)
since the methods rely on supervised learning, it is difficult to rec-
ognize gait under untrained/unknown viewing angles, (3) these
methods implicitly assume that people walk along straight paths
and that their walking direction does not change during a gait cycle
(i.e., that people do not walk along curved trajectories).

Most of the view independent methods restrict the view angle
change to a few angles, and they do not take into account curved
trajectories. However, people sometimes walk on curved trajecto-
ries so as to turn a corner or to avoid an obstacle.

3. Proposed descriptor

This work presents a method to recognize humans walking on
unconstrained paths, even with curved or straight trajectories,

and regardless direction changes. Thus, we propose a new gait
descriptor that is able to cope with rotation changes, while pre-
serving enough discriminatory information from the gait. In con-
trast to other related works, which discard a significant part of
3D information by computing the gait descriptors just from 2D
images, our descriptor focuses on capturing 3D dynamical informa-
tion of gait.

Let us assume that a workspace can be divided into N cubes of
the same size (called voxels). This workspace contains information
about the occupation, and can be denoted by:

V ¼ fv iji ¼ ðix; iy; izÞg j i 2 N3 ð1Þ
where 0 6 ix < Nx; 0 6 iy < Ny; 0 6 iz < Nz; i ¼ ðix; iy; izÞ represents
the voxel in Cartesian coordinates and v i 2 f1;0g depending on
whether the voxel is occupied or empty. We assume a function
f : N3 # R3 to map from voxel coordinates to scene coordinates.
For the sake of simplicity, we also assume that the reference system
of the monitored area is placed at the floor plane, in the center of
the volume. Therefore, x- and y-axis are on that plane, whereas z-
axis extends up.

Then, the workspace is divided into H 2 Nþ horizontal slices, as
shown in Fig. 2. Let us also define a slice SðhÞ; 0 6 h < H as a subset
of voxels:

SðhÞ ¼ v i j v i 2 V ^ h
Nz

H

� �
6 iz < ðhþ 1ÞNz

H

� �� �
ð2Þ

where Nz is the number of voxels of the discretized area with
respect to the z-axis. The centroid Ch ¼ ð�x; �y;�zÞ of each slice SðhÞ
can be denoted by:

Ch ¼ 1
SðhÞj j

X
v i2SðhÞ

v if ðiÞ ð3Þ

where SðhÞj j ¼ Nx � Ny � Nz
H represents the number of voxels of the

slice SðhÞ. Next, we define the acute angle bh between the normal

vector to the floor plane (~Z ¼ ð0;0;1Þ) and the vector joining each
pair of consecutive centroids as:

ah ¼ arccos
~Z � ChChþ1
����!

k Ch
�!kkChþ1

��!k

 !
; 0 6 h < H � 2; ð4Þ

bh ¼ minfah;180� ahg; ð5Þ

Fig. 2. The reconstructed model is divided into 3D stacked areas of the same size called slices (regions within dotted lines). Centroids are computed on each slice (red points).
The gait feature is composed by a set of inner angles between the line joining each pair of consecutive centroids (red line) and the z-axis in R3. Best viewed in color. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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where ChChþ1
����!

is the vector connecting the Ch and Chþ1 centroids.
Thus, for each instant t, our descriptor is a tuple of angular measure-
ments that we can define as:

DH;t ¼ ðbð0;tÞ; bð1;tÞ; . . . ;bðH�2;tÞÞ: ð6Þ
In addition, to preserve the height of the subject as feature, if

the slice is empty (e.g. partitions above the head), then the centroid
corresponds to the center of the slice (i.e., the slice is considered
fully occupied before computing its centroid).

The angular measurements are calculated on vectors in R3. We
can say that our descriptor is rotation invariant and, therefore, the
features extracted do not depend on the walking direction. Fur-
thermore, even though is possible that two different subjects
may have similar structure, differences on the dynamic of move-
ment should help to differentiate them.

4. Proposed framework

Series of 3D occupation volumes are generated frommulti-view
video sequences at a rate of a 3D volume per time. Once a person
has entered into the scene, our rotation invariant gait descriptor is
computed on each volume. Because of the invariant properties of
our gait descriptor, the direction of walking has no adverse effect
on the recognition. The gait signature is updated at time on the
basis of the previous gait descriptors.

The proposed algorithm consists of five steps which predict the
identity of a walking human at time t. Following are described
these steps in detail.

1. Silhouette extraction of each camera’s view by a background
subtraction technique [33].

2. 3D reconstruction from silhouettes captured from several view-
points, by a Shape from Silhouette algorithm (SfS) [34].

3. Person detection.
4. Coarse-to-fine descriptor generation and gait signature update.
5. Classification of gait signature by a machine learning algorithm.

The aim of the first three stages of the algorithm is to generate a
3D volume with occupancy information of the person at time t. On
the other hand, the last two stages of the algorithms perform the

feature extraction, signature generation and gait classification.
The pipeline of our approach is shown in Fig. 3.

4.1. Feature extraction on reconstructed gait volumes

As previously indicated, we compute a 3D reconstruction for
each frame of a gait sequence. In order to do this, we need to obtain
silhouettes from multiple calibrated cameras. Then, when the indi-
vidual has been detected, we extract features from the gait volume
and use them to update the gait signature.

4.1.1. Silhouette extraction
The first step of our pipeline consists in obtaining the silhou-

ettes of the walking subject. For this, we use a statistical approach
for real-time robust background subtraction presented by Hor-
prasert et al. in [33]. This approach is able to cope with local and
global perturbations, such as illumination changes, casted shadows
and highlights in controlled environments on static backgrounds.

Several silhouettes obtained by this algorithm are shown in
Fig. 6. As it can be seen, despite the use of an advanced background
subtraction technique, the silhouette is not perfectly defined. We
should note that the performance of the recognition method also
rely on the consistency of the silhouettes images, and therefore,
of the 3D reconstructions.

After the background subtraction, we carry out a filtering
through morphological operations as opening and closing. We do
not do any other post-process operation.

4.1.2. 3D reconstruction
Since our method computes the gait descriptor from a 3D occu-

pation volume, it requires a 3D reconstruction procedure, such as
the Shape from Silhouette (SfS) standard algorithm. We assume a
three-dimensional work area that is divided into cubes of the same
volume called voxels. Let us assume that there is a set of cameras
placed at known locations and that we have the silhouettes of the
foreground objects, obtained by a background subtraction method.
As described in more detail in [34], SfS method examine voxel pro-
jections in the foreground images in order to determine whether
they belong to the shape of objects or not. Each voxel is projected
in all the foreground images and if its projection lays completely
into a silhouette in all the foreground images, then it is considered

Fig. 3. Pipeline of our approach.
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occupied. However, if the voxel projects in a background region in
any of the images, it is considered unoccupied. Finally, if the voxel
projects partially in a foreground region, it is considered to belong
to an edge and a decision must be made. We base this decision on
the area of the projected voxel that lays into the silhouette. In the
end, the result is a Boolean decision (0,1) indicating whether the
region of the space represented by the voxel is empty or occupied.
Fig. 4 shows the 3D reconstruction of a fragment belonging to a
gait sequence.

In order to get a 3D reconstruction through SfS, calibration
information for a multi-camera setup is also required. A classical
black-white chessboard based technique [35] (OpenCV) can be
used to get the intrinsics of each camera. For the extrinsics, we rec-
ommend Aruco library [36] whose detection of boards (several
markers arranged in a grid) have two main advantages. First, since
there is more than one marker, it is less likely to lose them all at
the same time. Second, the more markers detected, the more
points available for computing the camera extrinsics. Calibrating
a multi-camera setup is a simple task that can be done in a few
minutes using the above referenced techniques. To minimize the
computational time, SfS could take advantage of the power of
Graphics Processing Units (GPU), as it was proved in [37,38].

4.1.3. Person detection
It is assumed that although there is only one person in the

scene, reconstructed shadows as well as noise can coexist, due to
a poor segmentation. Because of this, it is required to detect
whether the subject has fully entered into the scene, and track it.
To detect the person, we use a threshold g, which refers to the
number of occupied voxels corresponding to the size of a person.
The volume belonging to a person is that which has a number of
occupied voxels greater than g. This threshold is experimentally
fixed in Section 5.

In addition to this, we consider that the subject has fully
entered into the scene when the contour of the ground marginal
distribution of occupied voxels Pz is separated by at least one voxel
from the scene boundaries. So, let us define the ground marginal
distribution of occupied voxels as the integral over the z-axis:

Pzðx; yÞ ¼ 1
Nz

XNz�1

iz¼0

v ðx;y;izÞ: ð7Þ

4.2. Gait identification

We next describe the steps employed by our system to extract
the gait features, generate the gait signature and provide the name
of the person.

4.2.1. Descriptor generation and gait signature update
The first step of our classification system is the generation of the

gait descriptor DðH;tÞ at time t. The gait descriptor can be computed
on a detected gait volume as was described in Section 3. Then, the
gait signature can be built as a time series of gait descriptors
obtained from the 3D reconstructed gait sequence.

In order to combine different description levels, we propose a
coarse-to-fine refinement. We define the number of levels as:

0 < l 6 blog2Hc; ð8Þ
so that the first level descriptor contains features extracted from a
volume divided into 2 slices, the second level descriptor contains
features extracted from a volume divided into H ¼ 22 slices, and

so on until we have divided the volume into H ¼ 2l slices. We can
now concatenate the level descriptors to represent our coarse-to-
fine descriptor as:

Dðl;tÞ ¼ ðDð2;tÞ;Dð22 ;tÞ; . . . ;Dð2l ;tÞÞ: ð9Þ
The gait signature is a temporal pattern of gait, a sample that

feeds a classifier producing a class label corresponding to the iden-
tity of a particular person. Our signature is updated at every
moment of the walking, and it allows to take place a synchronous
classifying process. Thus, we define the gait signature G on a slid-
ing temporal window of size L. Let us denote G as:

Gðl;tÞ ¼ ðDðl;t�Lþ1Þ; . . . ;Dðl;t�1Þ;Dðl;tÞÞ; ð10Þ
which consist of a concatenation of L consecutive descriptors. In
other words, our gait signature is updated at each instant of the gait
by concatenating successive gait descriptors into a sliding temporal
window of size L.

Our gait signature preserves the temporal consistency and has
several advantages that are worth mentioning. First, the gait phase
of the first frame of a gait sequence of a subject does not have to be
the same for each person in the database. Second, it does not
require the sequence to be split into gait cycles, and therefore it
is not necessary to estimate the gait period. This makes our method
less restrictive compared to other techniques from the literature
such as [3,4,39] among others.

4.2.2. Classification
The gait signature Gðl;tÞ is in fact the feature vector used for clas-

sification. Each feature vector is assigned to a class label that cor-
responds to one of the person in the database. This idea is well
known as multi-class classification system.

We adopt the subspace Component and Discriminant Analysis,
based on Principal Component Analysis (PCA) and Linear Discrim-
inant Analysis (LDA), which seeks to project the original features to
a subspace of lower dimensionality so that the best data represen-
tation and class separability can be achieved simultaneously [40].
Then we use a Support Vector Machine (SVM) [41] for training
and classification.

The gait signature is based on the L previous volumes, and a
possibly different class label can be produced for each new gait sig-
nature at each time. In order to smooth and reinforce the results
over time, we use a majority vote policy over a sliding temporal
window of size W. Our recognition algorithm provides the identity
of the person as soon as possible. However, as the gait signature
information is computed on L previous volumes, the use of this
window causes a delay of Lþ ðW � 1Þ frames in obtaining the

Fig. 4. Example of reconstructed segment of a gait sequence, sampled at 2 Hz,
where each point represents a squared voxel. The time instant is represented by
different colors. Best viewed in color. (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)
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identity. The majority voting system over a sliding temporal win-
dow is represented in Fig. 5.

5. Experiments and discussion

In order to validate our approach, we carry out diverse experi-
ments on two publicly available datasets: the ‘‘AVA Multi-View
Dataset for Gait Recognition” [42] and the ‘‘Kyushu University 4D
Gait Database” [4]. In this section we try to answer, among others,
the following questions:

� Is our descriptor a valid approach to recognize walking humans
independently of the viewpoint? Is our proposal effective on
curved trajectories?

� What level of refinement for our coarse-to-fine gait descriptor is
required to achieve the best recognition rate?

� What is the effect of using PCA and PCA + LDA-based dimen-
sionality reduction on the recognition performance?

� What is the influence of the sliding temporal window for major-
ity voting policy on the recognition rate?

� How many cameras are needed to achieve good performance?
� Can the proposed model generalize well on unrestricted walk-
ing trajectories compared to other related works?

5.1. Datasets description

The first dataset where we perform our experiments is the ‘‘AVA
Multi-View Dataset for Gait Recognition” (AVAMVG)2 [42]. In
AVAMVG, 20 subjects perform 9 walking trajectories in an indoor
environment. Each trajectory is recorded by 6 color cameras placed
around a room that is crossed by the subjects during the perfor-
mance, according to the scheme of Fig. 6.

The video sequences of AVAMVG have a resolution of
640� 480 pixels, and were recorded at a rate of 25 frames per sec-
ond. For each actor, 9 gait sequences are captured in several trajec-
tories as described in the figure by ft1; . . . ; t9g. Of these
trajectories, 3 are straight (ft1; . . . ; t3g) and 6 are curved
(ft4; . . . ; t9g). An example of this dataset is shown in Fig. 7, in
which several subjects walk along different paths, from multiple
viewpoints.

‘‘Kyushu University 4D Gait Database” (KY4D)3 [4], it is com-
posed of sequential 3D models and image sequences of 42 subjects
walking along four straight and two curved trajectories. The
sequences were recorded by 16 cameras, at a resolution of
1032� 776 pixels. Although the KY4D Gait Database also provide
sequential 3D models of subjects, we have reconstructed them with

the same SfS method and resolution parameters used for the
AVAMVG models. The intrinsics and extrinsics camera parameters
are available for both databases. The camera setup of KY4D is shown
in Fig. 8.

The aim of our approach is to recognize people walking on
unconstrained paths, therefore we need databases containing
video sequences of people walking on various types of trajectories,
including curved paths. There are other publicly available gait
databases [43], such as the ‘‘CASIA Dataset B” [44], the ‘‘CMU
Motion of Body (MoBo)” [45], which are for changes on camera
viewpoint and that include 2D gait images captured by multiple
cameras. However, since these databases do not include people
walking on curved trajectories, our approach cannot be tested on
them.

5.2. Experimental results

This section explains the experimentation carried out to test our
proposal. First of all, we need to determine the value of several
parameters of our method. Thus, considering the 3D reconstruction
stage, thefirst relevant parameter is the voxel size.We tested several
voxel sizes, i.e. 0:015 m (3:3� 10�6 m3), 0.03 m (2:7� 10�5 m3),
0.06 m (21:6� 10�5 m3), 0.09 m (72:9� 10�5 m3) and 0.12 m
(172:8� 10�5 m3) of voxel side. Table 1 shows the influence of the
voxel size on the recognition rate. Thebest results for bothdatabases
were found with a voxel side of 0.03 m (2:7� 10�5 m3).

The average corporal volume for humans is 66:4L ¼ 6:64�
10�2 m3 measured by the water displacement method in 521 peo-
ple aged 17–51 years [46]. Using a voxel size of 2:7� 10�5 m3, the
number of voxels belonging to a person in a 3D volume should be
about 2459. Thus, with a value of g > 1� 103 (see Section 4.1.3)
the system should be able to efficiently detect when a person is
in the scene.

With regards to the number of refinement levels (see Sec-
tion 4.2.1), l ¼ 6 is the maximum allowed with the above described

voxel size and scene resolution (note that 2l must be less than or

Fig. 5. Majority vote policy over a sliding temporal window. In the example, the
size of the signature is set to L = 4, and the size of the voting window is set toW = 3.

Fig. 6. Workspace setup used by AVAMVG dataset, where fc1; . . . ; c6g represent the
set of cameras of the multiview dataset and ft1; . . . ; t9g represent the different
trajectories followed by each actor of the dataset.

2 Publicly available at: http://www.uco.es/investiga/grupos/ava/node/41.
3 Publicly available at: http://robotics.ait.kyushu-u.ac.jp/research-e.php?content=

db.
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equal to Nz). The length of the signature is set to L ¼ 20 and
L ¼ 30 for KY4D and AVAMVG respectively, because these values
roughly match with the average length of a gait cycle in these
databases.

We use a k-fold cross-validation strategy, where k corresponds
to the number of trajectories. On the one hand, the AVAMVG data-
set consists of 20 subjects performing 9 trajectories each, therefore
each fold is composed by a tuple formed by a set of 20 sequences
(one trajectory or sequence per actor) for testing, and by the
remaining eight trajectories of each actor for training, i.e. 20� 8
sequences for training and 20 sequences for test. It corresponds
to a 9-fold cross-validation. On the other hand, since the KY4D
dataset consists of 42 subjects and 6 trajectories, each fold is

Fig. 7. Example of AVAMVG multiview dataset. People walking in different directions, from multiple points of view. Below the color images are shown their respective
silhouettes, which have been obtained by using the background subtraction algorithm of Horprasert et al. [33]. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

Fig. 8. Experimental setup of KY4D. Each camera is represented by a circle and a
number which shows the order in which it was selected to evaluate the
performance changes with respect to the number of cameras (see Section 5.2 for
further details).

Table 1
Correct classification rate [%] for both AVAMVG and KY4D datasets with different
voxel sizes and values for the parameter l. Best results are marked in bold. The
signature length is set to L ¼ 20 for KY4D and L ¼ 30 for AVAMVG. The size of the
sliding temporal window for majority voting is set to W ¼ 1 (see Section 4.2 for
further details).

Voxel side (m) l AVAMVG [42] KY4D [4]
PCA + LDA PCA + LDA

0.015 5 75.73 68.21
0.015 6 74.49 68.69
0.03 5 91.22 89.52
0.03 6 91.55 88.72
0.06 4 83.52 72.59
0.06 5 89.92 74.63
0.09 3 64.81 44.34
0.09 4 85.80 56.88
0.12 3 51.23 29.33
0.12 4 79.60 42.59

402 D. López-Fernández et al. / J. Vis. Commun. Image R. 38 (2016) 396–406



composed by 42 sequences (one sequence per actor) for testing
and by the remaining five sequences of each actor (i.e. 42� 5
sequences) for training. It corresponds to a 6-fold cross-validation.

We use a C-SVC SVM, which allows imperfect separation of
classes with penalty multiplier for outliers. We use Radial Basis
Function as SVM kernels, since we obtained better results than
with linear, polynomial, or sigmoid kernels. We set the same
weight to all classes. To make the choice of SVM parameters inde-
pendent of the sequence test data, we cross-validate the SVM
parameters on the training set. Note that curved paths are some-
times longer than straight paths. In addition, some subjects walk
faster than others and therefore cause a greater number of votes
on the confusion matrix. To cope with this issue, we normalize
by class the results of each trajectory.

In order to achieve the best data representation and class sepa-
rability simultaneously, we apply PCA + LDA to the training and
test data (see Section 4.2.2). Here we tested several SVM kernels,
and finally we selected a C-SVC SVM with Radial Basis Function
since we obtained better results than with linear, polynomial, or
sigmoid kernels. With regard to PCA, we only retain 95% of the
variance.

Table 2 shows the recognition rate for several values of the
parameter l on AVAMVG and KY4D databases, with a voxel size
2:7� 10�5 m3. It also shows the effect of the dimensionality reduc-
tion on the recognition rate. In this experiment, for the sake of sim-
plicity, we disabled the sliding temporal window for majority
voting (W = 1). As can be seen, the best results are obtained with
high coarse-to-fine refinement level for the spatial division of the
human body region. These values correspond to H ¼ 64 for
AVAMVG and H ¼ 32 for KY4D. The average on number of features
can be seen in Table 3. As can be observed, the number of features
is considerably lower with PCA + LDA than with PCA. Therefore, if
the system can be trained off-line, LDA allows SVM to handle fea-
ture spaces of lower dimensionality, and the identity of the indi-
vidual could be given in less time.

We next conducted experiments in which we applied the slid-
ing temporal window for majority voting policy. We use a k-fold
cross-validation strategy where k is the number of trajectories,
similar to the first experiment. As can be seen in Figs. 9 and 10,
the use of a majority voting policy over a sliding temporal window
significantly improves the performance of our method, which is
close to achieving the perfect recognition. By using this approach,
the results are smoothed and reinforced over time. However, the
size of the window is limited by the number of available gait sig-
natures in each sequence.

The results of Tables 4 and 5 show detailed results of the k-fold
cross-validation experiment, which have been obtained by testing
on each trajectory and training on the remaining k� 1 trajectories.
It can be observed that our approach achieves good recognition

rates for both dataset, even with curved paths. In this experiment,
we have selected the optimal number of coarse-to-fine subdivi-
sions of the human body region that we found in the first experi-
ment for each database. Moreover, we have added the case
where the use of the sliding temporal window for majority voting
achieved the best results.

Our method does not require accurate models for feature
extraction. In order to determine the number of cameras that
should be employed and its effect on the performance, we have
designed a k-fold cross validation experiment where k refers to
the number of distinct trajectories. As in the others experiments,
to make the choice of SVM parameters independent of the
sequence test data, we cross-validate the SVM parameters on the

Table 2
Correct classification rate [%] for both AVAMVG and KY4D datasets and several values
for the parameter l. We use a k-fold cross-validation strategy, where k corresponds to
the number of trajectories. The size of the sliding temporal window for majority
voting is set to W ¼ 1. The signature length is set to L ¼ 20 for KY4D and L ¼ 30 for
AVAMVG. The voxel side is set to 0:03 m. Best results are marked in bold. (See main
text for further details.)

l AVAMVG [42] KY4D [4]

PCA PCA + LDA PCA PCA + LDA

1 10.98 N.A 12.13 N.A
2 53.22 45.50 57.25 N.A
3 69.38 63.22 74.84 73.16
4 84.74 83.83 85.03 85.38
5 92.24 91.22 87.40 89.52
6 92.13 91.55 86.59 88.72

Table 3
Number of features [AVG] for both AVAMVG and KY4D datasets and several values for
the parameter l.

l Without Dim. Red. AVAMVG [42] KY4D [4]

PCA PCA + LDA PCA PCA + LDA

1 20 8.11 N.A 9.66 N.A
2 80 30.11 20 28.66 N.A
3 220 88.55 20 62.50 42
4 520 222.22 20 159.16 42
5 1140 550.77 20 394.00 42
6 2400 1277.22 20 911.50 42

Fig. 9. Performance of our descriptor on the AVAMVG database for different lengths
of the majority voting window.

Fig. 10. Performance of our descriptor on the KY4D database for different lengths of
the majority voting window.
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training set. We selected the signature configuration that achieved
the best performance in the previous experiments and then we
tested it with a set of KY4D models which have been reconstructed
using a number of cameras in the range 3–16. Fig. 9 shows the
order in which the cameras were selected. For a two-camera recon-
struction, we selected cameras 1 and 2. For a four-camera recon-
struction, we selected cameras 1, 2, 3 and 4, and so on. This
arrangement was motivated by the results exposed in the work

of Takahashi et al. [47]. As can be seen in Fig. 11, with just 4 cali-
brated cameras, our method is able to correctly classify nearly 99%
of individuals, independently of the path, even with curved
trajectories.

5.3. Comparison with related work

We have compared our method with the recently published
approaches of Iwashita et al. [4] and Castro et al. [29] because these
methods are able to recognize people walking on curved trajecto-
ries, and they are therefore closely related with our aim. We have
also compared with Seely et al. [20] because this method is an
appearance-based approach which uses 3D reconstructed models.
Since this method is not designed to cope with curved trajectories,
we have aligned the gait volumes along the path.

We show the results of these experiments in Tables 6 and 7. In
the case of the AVAMVG dataset, we trained with linear trajectories
{t1, t2, t3} (all in the same set), and tested on curved trajectories t4
and t7 (see corresponding columns). For the KY4D dataset, we
trained on linear trajectories {t1, t2, t3,t4} (all in the same set)
and tested on curved trajectories t5 and t6. The percentage of rel-
ative difference on the average results between our proposal and
the proposals of Iwashita et al. [4] and Castro et al. [29] is 8:56%
and 18:02% respectively for KY4D, and 61:10% and 3:87% respec-
tively for AVAMVG.

We have noticed a low performance of the method of Iwashita
et al. when it is trained with straight paths and tested with curves
of the AVAMVG dataset. In the AVAMVG dataset, depending on the

Table 4
Correct classification rate on AVAMVG [%]. Each column corresponds to a test trajectory, using the remaining trajectories as training set. Each row corresponds to a different
configuration of the gait descriptor. Each entry contains the percentage of correct recognition for each tuple trajectory-setup. Best results are marked in bold.

Experiment Straight paths Curved paths AVG

t1 t2 t3 t4 t5 t6 t7 t8 t9

G64-PCA-W = 1 97.53 90.68 98.02 93.38 79.98 92.11 92.30 91.76 93.45 92.13
G64-PCA-W = 35 100 100 100 99.58 98.73 100 99.74 100 99.34 99.71
G64-PCA + LDA-W = 1 94.84 88.47 97.43 93.57 83.85 91.56 92.29 91.56 90.45 91.55
G64-PCA + LDA-W = 32 99.47 98.52 100 99.64 98.55 99.55 99.77 98.93 99.75 99.35

Table 5
Correct classification rate on KY4D [%]. Each column corresponds to a test trajectory, using the remaining trajectories as training set. Each row corresponds to a different
configuration of the gait descriptor. Each entry contains the percentage of correct recognition for each tuple trajectory-setup. Best results are marked in bold.

Experiment Straight paths Curved paths AVG

t1 t2 t3 t4 t5 t6

G32-PCA-W = 1 93.12 97.55 96.44 96.16 54.25 86.86 87.39
G32-PCA-W = 130 97.56 100 100 100 90.24 100 97.96
G32-PCA + LDA-W = 1 94.98 98.62 99.10 97.22 58.09 89.09 89.51
G32-PCA + LDA-W = 99 97.56 100 100 100 100 100 99.59

Fig. 11. Performance of our descriptor on KY4D database for an increasing number
of cameras.

Table 6
Correct classification rate [%] on AVAMVG gait dataset. Each row corresponds to a
different method. The second column indicates the training trajectory. The third and
fourth columns indicate the tested trajectory. For the method of Iwashita et al., we set
K ¼ 5 and M ¼ 40 (see Section 4 of [4]). For the method of Castro et al., we selected
PFM + PCAL100 + PCAH256 + pyr and K ¼ 150 (see Section 3, Table II of [29]). For the
method of Seely et al. [20] we have used the side-on, front-on, top-down average
silhouettes (see Section 5 of [20]).

Method Training trajectories t4 t7 AVG

G64;W = 57, PCA + LDA straight {t1, t2, t3} 90.69 96.57 93.63
G64;W = 30, PCA + LDA straight {t1, t2, t3} 89.85 94.26 92.05
Castro et al. [29] straight {t1, t2, t3} 85.00 95.00 90.00
Seely et al. [20] straight {t1, t2, t3} 55.00 70.00 62.50
Iwashita et al. [4] straight {t1, t2, t3} 35.14 37.71 36.42

Table 7
Correct classification rate [%] on KY4D gait dataset. Each row corresponds to a
different method. The second column indicates the training trajectory. The third and
fourth columns indicate the tested trajectory. The results of the method of Iwashita
et al. are taken directly from [4]. The results of [29] has been obtained by combining
all the viewpoints of KY4D dataset by majority voting, PFM + PCAL150 + PCAH256
+ pyr and K ¼ 200 (see Section 3 of [29]). For the method of Seely et al. [20] we have
used the side-on, front-on, top-down average silhouettes (see Section 5 of [20]).

Method Training trajectories Curve 1 Curve 2 AVG

G64;W = 130, PCA + LDA straight {t1, t2, t3, t4} 68.29 77.50 72.89
G64;W = 20, PCA + LDA straight {t1, t2, t3, t4} 63.16 73.53 68.34
Iwashita et al. [4] straight {t1, t2, t3, t4} 61.90 71.40 66.65
Castro et al. [29] straight {t1, t2, t3, t4} 58.50 61.00 59.75
Seely et al. [20] straight {t1, t2, t3, t4} 19.51 35.00 27.25
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viewpoint and trajectory, people appear at diverse scales, even
showing partially occluded body parts. The method presented in
[4] is based on high accuracy adaptive virtual image synthesis. In
that method, affine moment invariants are used to describe the
shape properties of the synthesized silhouettes. However, as can
be seen in results of Table 6, it seems to decrease performance
when silhouettes are rendered from inaccurate and inconsistent
models (e.g., those that are reconstructed from poor segmentation
results (see Fig. 7)). The results of Table 6 demonstrate that our
method is robust against inaccurate and inconsistent models.

On the other hand, we know that on curved trajectories some
persons tend to lean towards to the turning direction. Furthermore,
some of them tend to rotate the torso and move the head towards
the walking direction. It is shown in Fig. 12, where the torso main
axis is drawn by a blue line, the velocity vector is drawn by a red
line, and the head is indicated by a circle. The first two images of
the top row and the last two images of the bottom row clearly
show the leaning of the individual when it is depicting a curved
trajectory. This could explain the low recognition rate obtained
when the method is trained just with straight paths and it is tested
with curved trajectories. As can be seen in Tables 6 and 7, the
recognition rates fall well below to the results of Tables 2, 4 and
5, when the system is trained with both curved and straight trajec-
tories. For these stated reasons, in order to identify people walking
on curved trajectories, we suggest training the system with both
straight and curved trajectories.

6. Conclusions

This paper has proposed a new gait recognition approach to
identify people independently of the path, and regardless direction
changes. In contrast to other view-independent approaches which
restrict the view change to a few angles and cannot cope with
curved trajectories, our approach allow people to walk freely in
the scene without adversely affecting to the recognition, even with
curved trajectories.

A new rotation invariant gait descriptor has been proposed to
cope with rotation changes on curved trajectories, while preserv-
ing enough discriminatory information from the gait. Our descrip-
tor focuses on capturing 3D dynamical information of gait, unlike
other related works which discard a significant part of 3D informa-
tion by computing the gait descriptors just from 2D images.

This approach does not require the sequence to be split into gait
cycles, because the gait signature is built on a sliding temporal
window. In addition, another sliding temporal window for

majority vote policy is used to smooth and reinforce the results
over time. The experiments have been conducted on two datasets,
and they have shown that our approach is able to reach a correct
classification rate close to 100%.

Despite of using 3D models, we have proved that our descriptor
does not require high-accurate reconstructions, and it efficiently
works with only four calibrated cameras.
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Contributions to Gait Recognition Using Multiple-Views

7.2 Angular analysis without 3D human re-

constructions

This section presents a method to recognize walking humans independently
of the viewpoint and regardless direction changes on curved trajectories. In
contrast to the above work, this approach aims to extract 3D dynamical
information of gait without using 3D reconstructions.
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ABSTRACT
Appearance changes due to viewing angle changes cause dif-
ficulties for most of the gait recognition methods. In this
paper, we propose a new approach for multi-view recogni-
tion, which allows to recognize people walking on curved
paths. The recognition is based on 3D angular analysis of
the movement of the walking human. A coarse-to-fine gait
signature represents local variations on the angular mea-
surements along time. A Support Vector Machine is used
for classifying, and a sliding temporal window for majority
vote policy is used to smooth and reinforce the classification
results. The proposed approach has been experimentally
validated on the publicly available “Kyushu University 4D
Gait Database”. The results show that this new approach
achieves promising results in the problem of gait recognition
on curved paths.

CCS Concepts
•Security and privacy → Biometrics; •Computing
methodologies → Tracking; Activity recognition and un-
derstanding; Motion capture; •Applied computing→ Surveil-
lance mechanisms;

Keywords
Gait recognition; 3D descriptor; independent-view; curved
paths.
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Researches on human gait as a biometric feature for iden-
tification have received a lot of attention due to the advan-
tage that it can operate from a distance and can be applied
discreetly without needing the active participation of the ob-
served individual [7]. However, gait recognition performance
is significantly affected by changes in various covariate con-
ditions such as clothing [6], camera viewpoint [12, 9], load
carrying [16], and walking speed [18].

According to camera viewpoint, the previous work can
be categorized into two approaches: view-dependent and
view-independent approaches. View-dependent approaches
assume that the viewpoint will not change while walking
[13, 2, 5, 17]. In such methods, a change in the appear-
ance, caused by a viewpoint change, adversely affects to the
recognition [19]. For example, when a subject walks along a
curved trajectory, the observation angle between the walking
direction of the subject and the camera optical axis is grad-
ually changed at all frames during a gait cycle. Fig. 1 shows
this problem and the influence of a curved path on the sil-
houette appearance. On the contrary, the view-independent
approaches aim to recognize people under different viewing
angles. However, some of them do not allow curved trajec-
tories or direction changes during walking.

This paper presents a new approach for multi-view gait
recognition which allows to identify people walking along
both curved and straight paths. Some potential applications
of this work is smart video surveillance (e.g. bank offices,
government facilities, or underground stations) and access
control or monitoring in special or restricted areas (e.g. mil-
itary bases or medical isolation zones where subjects wear
special clothing that does not allow to show the face or use
the fingerprint).

The rest of the paper is structured as follows. After pre-
senting in Section 2 the related work, we describe our pro-
posed framework for gait recognition in Section 3. Section
4 is devoted to the experimental results. And, finally, we
conclude this paper in Section 5.



Figure 1: In a curved path, the observation angle
between the walking direction of the subject and op-
tical axis of the camera is gradually changed, which
affects the silhouette appearance.

2. RELATED WORK
Appearance changes due to viewing angle changes cause

difficulties for most of the gait recognition methods. This
situation cannot be easily avoided in practical applications.
There are three major approach categories to sort out this
problem, namely: (1) approaches that construct 3D gait
information through multiple calibrated cameras; (2) ap-
proaches that extract gait features which are invariant to
viewing angle changes; (3) approaches whose performance
relies on learning mapping/projection relationship of gaits
under various viewing angles [12].

Approaches of the first category are represented by [1, 9].
The approach of Bodor et al. [1] tries to classify the motion
of a human in a view-independent way, but it also has two
drawbacks. On the one hand it considers only straight paths
to estimate the position and orientation of a virtual camera.
Tests were performed only on straight path motions. On
the other hand, not all the 3D information available in the
VH is used, because feature images are extracted from 2D
images rendered only from a single view.

In [9], an observation angle at each frame of a gait se-
quence is estimated from the walking direction, by fitting a
2D polynomial curve to the foot points. Virtual images are
synthesized from a 3D model, so that the observation angle
of a synthesized image is the same that the observation angle
for the real image of the subject, which is identified by us-
ing affine moment invariants extracted from images as gait
features. The advantage of this method is that the setup
assumes multiple cameras for training, but only one camera
for testing. However, as in the above two works, despite 3D
models are used, descriptors are computed from silhouettes
and they based on 2D information, so that 3D information
is discarded.

Approaches of the second category extract gait features
which are invariant to viewing angle change. In [10], a
method based on homography to compute view-normalized
trajectories of body parts obtained from monocular video
sequences was proposed. But this method efficiently works
only for a limited range of views. Planar homography has
also been used to reduce the dependency between the mo-

tion direction and the camera optical axis [11], however
this method seems not to be applicable when the person
is walking nearly parallel to the optical axis. In [4] view-
invariant features are extracted from GEI. Only parts of gait
sequences that overlap between views are selected for gait
matching, but this approach cannot cope with large view
angle changes under which gait sequences of different views
can have little overlap.

A self-calibrating view-independent gait recognition based
on model-based gait features is proposed in [3]. The poses of
the lower limbs are estimated based on markerless motion es-
timation. Then, they are reconstructed in the sagittal plane
using viewpoint rectification. This method has two main
drawbacks that are worth mentioning: 1) the estimation of
the poses of the limbs is not robust from markerless motion;
2) it is not applicable for frontal view because the poses of
the limbs become untraceable; and 3) this method assume
that subjects walk along a straight line segment.

The approaches of the third category rely on learning
mapping/projection relationship of gaits under various view-
ing angles. The trained relationship may normalize gait
features from different viewing angles into shared feature
spaces. An example from this category can be read in [14],
where LDA-subspaces are learned to extract discriminative
information from gait features under each viewing angle.

A View Transformation Model (VTM) was introduced by
[15] to transform gait features from different views into the
same view. The method of Makihara et al. [15] creates
a VTM based on frequency-domain gait features, obtained
through Fourier Transformation. A sparse-regression-based
VTM for gait recognition under various views is also pro-
posed in [12]. However, this method cannot deal with changes
in the direction of motion and cannot be applied to recognize
people walking on curved trajectories.

Although methods of the third category have better abil-
ity to cope with large view angle changes compared to other
works, some common challenges are the following [12]: (1)
performance of gait recognition decreases as the viewing
angle increases; (2) since the methods rely on supervised
learning, it will be difficult for recognizing gait under un-
trained/unknown viewing angles, (3) these methods implic-
itly assume that people walk along straight paths and that
their walking direction does not change during a single gait
cycle (i.e., that people do not walk along curved trajecto-
ries).

Most of the view independent methods restrict the view
angle change to a few angles, and they do not take into ac-
count curved trajectories. However, people sometimes walk
on curved trajectories so as to turn a corner or to avoid an
obstacle.

3. PROPOSED FRAMEWORK
This work presents a method to recognize walking hu-

mans independently of the viewpoint and regardless direc-
tion changes on curved trajectories. Our approach aims to
extract 3D dynamical information of gait. The body human
region is vertically divided into 3D stacked areas of the same
size called slices and then we compute the centroid of each
slice. The gait feature is composed by a set of acute angles
between the line joining each pair of consecutive centroids
and the z-axis (z-axis extends up) in R3.

The proposed algorithm consists of four steps that predict
the identity of a walking human a time t. Following are



Figure 2: The principal axis of the silhouettes is
back-projected to get a plane. Then, the location
of the individual in the scene is determined by the
intersection between the line of intersection of the
two planes and the floor plane.

Figure 3: The centroid Ch is obtained by finding the
point closest to the set of rays {Li,h | 0 6 i < N}. See
main text for further details.

described these steps in detail.

3.1 Tracking
We assume a set of N calibrated cameras. Since cameras

have been calibrated, the internal and external camera pa-
rameters are known. We also assume the floor to be flat and
its position in 3D space to be known.

The first step of our algorithm is to determine the loca-
tion of the individual in the scene. For that, we start by
obtaining the principal axis of the silhouette for each cam-
era view i by Principal Component Analysis. Next, for each
view, we back-project this line in order to get the plane
πi ∈ {π0, π1, ..., πN−1}, as Fig. 2 shows.

It is assumed a function f : R3 7→ R3 to map from cam-
era local coordinates to scene world coordinates. Then we

map each plane πi from local camera coordinates to scene
world coordinates. Let us denote ri,j as the intersection
line between the planes πi and πj , where 0 6 i < N and
0 6 j < N .

We denote F as a set of candidate foot points, obtained
by intersecting the lines ri,j with the floor plane, without
repetition, so that the cardinality of the set is |F | =

(
N
2

)
.

Finally, the location of the individual is denoted by:

P =
1

|F |

|F |∑

i=0

Fi. (1)

3.2 Descriptor generation
Given a foot point P : (Px, Py, 0), the 3D scene is verti-

cally divided into H ∈ N+ parts, called slices. Let us denote
pi,h and pi,h+1 as the projections on the image view i of the
3D points (Px, Py, h

Z
H

) and (Px, Py, (h+ 1) Z
H

) respectively,
where Z is the total height of the 3D scene. We compute
the 2D centroid ci,h = {x̄, ȳ} on the bounding box enclosing
the pixels (0, pi,h+1

y ) and (w, pi,hy ), where w is the width of
the image.

Then, using the 2D centroid ci,h and the calibration data
for the view i, we can backproject the ray Li,h passing
through the image view point ci,h. In order to obtain an ap-
proximation of the 3D centroid Ch of the slice h in the scene,
we find the point closest to the set of rays {Li,h | 0 6 i < N}.
We propose to solve it by minimizing the sum of squared dis-
tances.

Next we define the angle between the normal vector to the
floor plane (~Z = (0, 0, 1)) and the vector joining each pair
of consecutive centroids as:

αh = arccos (
~Z · −−−−−→ChCh+1
−−−−−→
ChCh+1

), 0 6 h < H − 2, (2)

βh = min{αh, 180− αh}, (3)

where
−−−−−→
ChCh+1 is the vector connecting the Ch and Ch+1

centroids. Thus, for each instant t, our descriptor is a tuple
of angular measurements that we can define as:

DH,t = (β(0,t), β(1,t), ..., β(H−2,t)). (4)

If the slice h is empty (e.g. slices above the head) or
|{Li,h}| < 2, Ch cannot be estimated. In such cases, to
preserve the height of the subject as feature, we set βh,t = 0.
Fig. 3 shows the descriptor generation process.

3.3 Signature update
The first step of our classification system is the generation

of the gait descriptor D(H,t) at time t. Then, the gait signa-
ture can be built as a time series of gait descriptors obtained
from the 3D reconstructed gait sequence.

In order to combine different description levels, we propose
a coarse-to-fine refinement. We define the number of levels
as:

0 < l 6 blog2Hc, (5)

so that the first level descriptor contains features extracted
from the scene divided into 2 slices, the second level descrip-
tor contains features extracted from the scene divided into
H = 22 slices, and so on until we have divided the scene into



H = 2l slices. We can now concatenate the level descriptors
to represent our coarse-to-fine descriptor as:

D(l,t) = (D(2,t), D(22,t), ..., D(2l,t)). (6)

The gait signature is a temporal pattern of gait, a sample
that feeds a classifier producing a class label corresponding
to the identity of a particular person. Our signature is up-
dated at every moment of the walking, and it allows to take
place a synchronous classifying process. Thus, we define the
gait signature G on a sliding temporal window of size L. Let
us denote G as:

G(l,t) = (D(l,t−L+1), ...,D(l,t−1),D(l,t)), (7)

which consists of a concatenation of L consecutive descrip-
tors. In other words, our gait signature is updated at each
instant of the gait by concatenating successive gait descrip-
tors into a sliding temporal window of size L.

Our gait signature has several advantages that are worth
mentioning. First, the gait phase of the first frame of a
gait sequence of a subject does not have to be the same for
each person in the database. Second, it does not require
the sequence to be split into gait cycles, and therefore it is
not necessary to estimate the gait period. This makes our
method less restrictive compared to other techniques from
the literature such as [12, 9] among others.

3.4 Classification
The gait signature G(l,t) is in fact the feature vector used

for classification. Each feature vector is assigned to a class
label that corresponds to one of the person in the database.

We adopt the subspace Component and Discriminant Anal-
ysis, based on Principal Component Analysis (PCA) and
Linear Discriminant Analysis (LDA), which seeks to project
the original features to a subspace of lower dimensionality
so that the best data representation and class separability
can be achieved simultaneously [8]. Then we use a Support
Vector Machine (SVM) for training and classification.

The gait signature is based on the L previous volumes,
and a possibly different class label can be produced for each
new gait signature at each time. In order to smooth and re-
inforce the results over time, we use a majority vote policy
over a sliding temporal window of size W . Our recogni-
tion algorithm provides the identity of the person as soon as
possible. However, as the gait signature information is com-
puted on L previous volumes, the use of this window causes
a delay of L+ (W − 1) frames in obtaining the identity.

4. OVERVIEW OF THE EXPERIMENTS
In order to validate our approach, we carry out diverse

experiments on the publicly available “Kyushu University
4D Gait Database” [9]. With these experiments we try to
answer, among others, the following questions:

• Is our descriptor a valid approach to recognize walk-
ing humans independently of the viewpoint, even with
curved trajectories?

• What level of refinement for our coarse-to-fine gait
descriptor is required to achieve the best recognition
rate?

• What is the influence of the sliding temporal window
for majority voting policy on the recognition rate?

• How many cameras are needed to achieve good perfor-
mance?

4.1 Dataset description
“Kyushu University 4D Gait Database” (KY4D) 1 [9], it

is composed of sequential 3D models and image sequences
of 42 subjects walking along four straight and two curved
trajectories. The sequences were recorded by 16 cameras, at
a resolution of 1032× 776 pixels. The studio setup is shown
in Figure 4. Despite 3D models are available, we do not
use them, because this work relies on camera calibration for
getting 3D information.

Figure 4: Experimental setup of KY4D.

As can be seen in Figure 4, KY4D gait sequences are cap-
tured by 16 cameras forming rings at two heights. The lower
level comprises the cameras {7451527, 7172435, 7121059,
7451462, 7451476, 7340706, 7451471, 7230135}, whereas the
upper level comprises the cameras {7451465, 7340709, 7340697,
7451466, 7451477, 7340692, 7451468, 7340700}.

4.2 Experimental results
Next we need to determine the value of several parameters

of our method. According to the length of the gait signature,
we set to L = 20 the number of frames where our descriptor
is computed, because this value roughly matches with the
average length of a gait cycle. Regarding the number of
levels (see Section 3.3), we tested l from 1 (2 slices) to 6 (26

slices).
We use a leave-one-out cross-validation strategy. Thus,

each fold is composed by 42 sequences (one sequence per
actor) for testing and by the remaining five sequences of
each actor (i.e. 42× 5 sequences) for training. We use a C-
SVC SVM with Radial Basis Function (RBF) kernel, since
we obtained better results than with linear, polynomial, or
sigmoid kernel. So, we have to adjust the parameter C and
the gamma value for the RBF kernel. To make the choice
of these parameters independent of the sequence test data,
we cross-validate the SVM parameters on the training set.
Note that curved paths are sometimes longer than straight
paths. Moreover, some subjects walk faster than others and
therefore cause a greater number of votes. To cope with this
issue, we normalize by class the results of each trajectory.

1Publicly available at: http://robotics.ait.kyushu-
u.ac.jp/research-e.php?content=db



Straight paths Curved paths
Experiment t1 t2 t3 t4 t5 t6 AVG

upper-G32-PCA-W=1 44.63 51.80 46.78 48.13 28.74 58.45 46.42
upper-G32-PCA-W=120 70.73 78.04 82.92 87.80 54.34 85.00 76.47
upper-G32-PCA+LDA-W=1 49.85 57.07 51.12 52.68 29.70 56.05 49, 41
upper-G32-PCA+LDA-W=120 80.48 80.48 90.24 82.92 52.17 72.50 76, 46
lower-G32-PCA-W=1 84.86 87.73 88.97 89.49 52.24 78.02 80.21
lower-G32-PCA-W=120 95.12 100 100 100 97.82 100 98.82
lower-G32-PCA+LDA-W=1 88.24 89.82 89.10 90.30 52.42 78.52 81.40
lower-G32-PCA+LDA-W=120 97.56 100 100 100 91.30 97.50 97.72

Table 2: Correct classification rate on KY4D [%]. Each column corresponds to a test trajectory, using the
remaining trajectories as training set. Each row corresponds to a different configuration of the gait descriptor.
Each entry contains the percentage of correct recognition for each tuple trajectory-setup.

l PCA PCA+LDA

1 5.99 N.A
2 31.54 32.92
3 56.98 56.38
4 74.75 74.68
5 80.21 81.40
6 79.56 80.69

Table 1: Correct classification rate [%] on the lower
set of cameras for several values of the parameter l.
The size of the sliding temporal window for majority
voting is set to W = 1. Best result is marked in bold.

In order to achieve the best data representation and class
separability simultaneously, we apply PCA+LDA to the train-
ing and test data (see Section 3.4). With regard to PCA, we
only retain 95% of the variance. In the classification step, we
tested several SVM kernels, and finally we selected a C-SVC
SVM with Radial Basis Function since we obtained better
results than with linear, polynomial, or sigmoid kernels.

The recognition rate on the lower set of cameras for several
values of the parameter l is shown in Table 1. It also shows
the effect of the dimensionality reduction on the recogni-
tion rate. In this experiment, for the sake of simplicity,
we disabled the sliding temporal window for majority vot-
ing (W = 1). We obtained the best results with l = 5
and PCA+LDA. Besides the recognition rate, the number
of features is considerably lower with PCA+LDA than with
PCA.

We next conducted experiments in which we applied the
sliding temporal window for majority voting policy. As can
be seen in Figure 5, the use of a majority voting policy over
a sliding temporal window significantly improves the perfor-
mance of our method. However, the performance obtained
with the lower set of cameras is greater than with the upper
set (see Section 4.1). This may be caused by the tilt of the
upper set of cameras. Further analysis of this issue is left
for a future study. The size of the window is limited by the
number of available gait signatures for each sequence.

The results of Table 2 shows detailed results for the leave-
one-out experiment, with l = 5. We show the effect of ap-
plying the sliding temporal window for majority voting com-
pared with W = 1 (disabled window). As can be seen, we
have obtained better results with the lower set of cameras
than with the upper set. This could be due to the tilt of the
cameras. This issue is left for a future study.

In order to determine the number of cameras that should
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be employed and its effect on the performance, we have
designed a leave-one-out cross validation experiment. We
selected the signature configuration that achieved the best
performance in the previous experiments and then we tested
it with a variable number of cameras of the lower set in the
range 2 to 8. As can be seen in Figure 6, with just 2 cali-
brated cameras, our method is able to correctly classify up
to 95% of individuals, independently of the path, even with
curved trajectories. This is because at least two rays are
needed (|{Li,h}| < 2) to obtain the intersection Ch.

5. CONCLUSIONS
This paper has proposed a new approach to recognize

walking humans independently of the viewpoint and regard-
less direction changes on curved trajectories. Our approach
allow people to walk freely in the scene, in contrast to others
view-independent approaches which restrict the view change
to a few angles.

A new rotation invariant gait descriptor has been pro-
posed to cope with rotation changes on curved trajectories,
while preserving enough discriminatory information from
the gait. Our descriptor focuses on capturing 3D dynam-
ical information of gait.

This approach does not require the sequence to be split
into gait cycles, and the results are smoothed and reinforced
over time by using a sliding temporal window for majority
voting policy. Experimental results show that our method
is able to reach a correct classification rate up to 95%.
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Chapter 8

Conclusions

This chapter lists the main conclusions of this dissertation in Section 8.1. Fi-
nally, Section 8.2 enumerates some open research lines that will be continued
in the near future.

8.1 Conclusions and main contributions

Along this dissertation, the main goal we have pursued has been achieving
new 3D gait recognition methods able to identify people independently of
the trajectory of motion. As it was stated in Section 1.3, we have tackled
such a main goal from the standpoint of 3D reconstructions.

It has been demonstrated that the use of 3D reconstructions in gait
recognition have several advantages. Firstly, the use of a methodology based
on 3D reconstructions and gait alignment is a way to adapt, by means of
projections, well-known 2D gait recognition descriptors (such as the GEnI
[75] and the cover CR(S ) [34]) in order to recognize people independently of
the trajectory of motion, even with curved trajectories and direction changes.
Secondly, a greater amount of dynamical information can be extracted and
analysed from the 3D domain, leading to a better accuracy in contrast to
other related works, which only compute the gait descriptors from 2D images,
discarding a significant part of 3D dynamical information of the gait.

Chapters 4 to 6 have covered the topic of 3D reconstructions and gait
alignment, and have presented two contributions to extract a gait signature
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Contributions to Gait Recognition Using Multiple-Views

from aligned 3D volumes. The first contribution [108] is described in Chapter
5 and proposes two new morphological descriptors which are listed below:

• The aggregation of three CR descriptors computed on the top, side,
and frontal projections of the gait volume (CRP).

• The Cover by Cubes (CC), which is defined as the union of all the
cubes with the largest size that can fit into a gait volume of a person.

As can be seen in [108] and Chapter 5, the experimental results show
that the CRP(M = N = 20) signature provides good results on both
AVAMVG and KY4D gait databases. By using a sliding temporal window
for majority voting, the system is able to correctly identify up to 96% of the
subjects of the AVAMVG gait database and nearly 94% of subjects of the
KY4D dataset.

The second contribution [109] is described in Chapter 6 and proposes
the Gait Entropy Volume (GEnV), which focuses on capturing 3D dynamic
information of a walking human through the concept of entropy, applied on
aligned volumetric reconstructions. Several signatures based on marginal dis-
tributions of the GEnV, and combinations of them, have also been proposed
in order to get a better recognition rate.

The experimental results show that G GEnV
F⊕S⊕T and G GEnV

F⊕S signatures are
the most reliable for using with our gait recognition method on unconstrained
path, providing a recognition rate of 100% and 99.59% with both signatures
on AVAMVG and KY4D, respectively.

The third contribution [110] is described in Chapter 7. In Section 7.1
is presented a new rotation invariant gait descriptor which can be applied on
3D reconstructed volumes without the need for a previous alignment step.
What is specially interesting of this descriptor is that it can be applied to
characterize the gait of an individual independently of the trajectory of mo-
tion, and regardless direction changes. With this approach, the recognition
rate is 99.35% and 99.59% on AVAMVG and KY4D, respectively.

The use of a sliding temporal window for majority voting policy has
improved the classification results of the described approaches. It was pro-
posed to smooth and reinforce the results over time. We have also exhaus-
tively compared our approaches with several close-related state of the art
works such as [34, 75, 26, 57, 58, 67], using the both AVAMVG and KY4D
publicly available databases.
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Chapter 8. Conclusions

However, the use of 3D reconstructions had also two main disadvan-
tages. The first is the need for a multi-view camera setup. The second is the
need for calibration information. In Section 7.2, we propose a method [111]
whose aim is to extract 3D dynamical information of gait without using 3D
reconstructed volumes, but its performance seems to be seriously affected by
the camera tilting.

8.2 Future research

This dissertation has addressed the problem of the independence from the
trajectory in gait recognition, from the standpoint of 3D reconstructions.
However, the use of 3D reconstructions have also two main disadvantages.
The first is the need for a multi-view camera setup. The second is the need
for calibration information.

We consider this thesis as a milestone in a long road towards unre-
stricted automatic video-surveillance based on gait. We have detected the
following future research lines:

• The development of unconstrained gait recognition methods, i.e. with-
out camera calibration on single-view datasets. E.g. the View Trans-
formation Models (VTM) do not require camera calibration. The per-
formance of these methods relies on learning mapping/projection re-
lationship of gaits under various viewing angles. However, in VTM it
is difficult to recognize gait under untrained viewing angles, and these
methods assume people walk along straight paths. They could be im-
proved to cope with direction changes.

• The design of methods that do not require neither camera calibration
nor multi-view sequences would allow to use more populated databases,
such as OU-ISIR.

• In Section 7.2, we propose a method whose aim is to extract 3D dy-
namical information of gait without using 3D reconstructed volumes,
but its performance seems to be seriously affected by the camera tilt-
ing. The correction of the camera tilting before computing the gait
descriptor could be a significant improvement of this method.

• Occlusion handling is a major problem in gait recognition. Typically,
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during occlusion, only portions of the body are visible. The individu-
als can be occluded by fixed or moving objects, but they can also be
self-occluded. The self-occlusion of a human body is a difficult problem
which occurs mainly in 2D-based gait recognition methods. We con-
sider the use of multiple cameras as a possible way to address different
types of occlusions.

• The design of methods to address other covariate conditions, such as
clothing and load or bag carrying.
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[110] D. López-Fernández, F.J. Madrid-Cuevas, A. Carmona-Poyato,
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